Минор и алгебраическое дополнение. Виды миноров и алгебраических дополнений. Вычислить определитесь матрицы

МиноромM ij элемента a ij определителя n -го порядка называется определитель порядка (n-1 ), полученный из данного определителя вычеркиванием строки и столбца, в которых находится этот элемент (i -ой строки и j -го столбца).

Алгебраическое дополнение элемента a ij задается выражением:

Определители порядка n >3 вычисляются с помощью теоремыо разложении определителя по элементам строки или столбца:

Теорема. Определитель равен сумме произведений элементов любой строки или любого столбца на соответствующие этим элементам алгебраические дополнения, т.е.

Пример.

Вычислить определитель, разложив его по элементам строки или столбца:

Решение

1. Если в какой-нибудь одной строке или одном столбце присутствует только один элемент, отличный от нуля, то преобразовывать определитель нет необходимости. В противном случае, прежде чем применять теорему о разложении определителя, преобразуем его, используя следующее свойство: если к элементам строки (столбца) прибавить соответствующие элементы другой строки (столбца), умноженные на произвольный множитель, то значение определителя не изменится.

Из элементов строки 3 вычитаем соответствующие элементы строки 2 .

Из элементов столбца 4 вычитаем соответствующие элементы столбца 3 , умноженные на 2.

Разлагаем определитель по элементам третьей строки

2. Полученный определитель 3-го порядка можно вычислить по правилу треугольников или по правилу Саррюса (см выше). Однако элементы определителя являются числами довольно большими, поэтому разложим определитель, предварительно преобразовав его:

Из элементов второй строки вычитаем соответствующие элементы первой строки, умноженные на 3.

Из элементов первой строки вычитаем соответствующие элементы третьей строки.

К элементам строки 1 прибавляем соответствующие элементы строки 2

Определитель с нулевой строкой равен 0.

Итак, определители порядка n >3 вычисляются:

· преобразованием определителя к треугольному виду с помощью свойств определителей;

· разложением определителя по элементам сроки или столбца, тем самым понижая его порядок.

Ранг матрицы.

Ранг матрицы представляет собой важную числовую характеристику. Наиболее характерной задачей, требующей нахождения ранга матрицы, является проверка совместности системы линейных алгебраических уравнений.

Возьмем матрицу А порядка p xn . Пусть k – некоторое натуральное число, не превосходящее наименьшего из чисел p и n , то есть,

Минором k-ого порядка матрицы А называется определитель квадратной матрицы порядка k xk , составленной из элементов матрицы А , которые находятся в заранее выбранных k строках и k столбцах, причем расположение элементов матрицы А сохраняется.

Рассмотрим матрицу:

Запишем несколько миноров первого порядка этой матрицы. К примеру, если мы выберем третью строку и второй столбец матрицы А , то нашему выбору соответствует минор первого порядка det(-4)=-4. Иными словами, для получения этого минора мы вычеркнули первую и вторую строки, а также первый, третий и четвертый столбцы из матрицы А , а из оставшегося элемента составили определитель.

Таким образом, минорами первого порядка матрицы являются сами элементы матрицы.

Покажем несколько миноров второго порядка. Выбираем две строки и два столбца. К примеру, возьмем первую и вторую строки, и третий и четвертый столбец. При таком выборе имеем минор второго порядка
.

Другим минором второго порядка матрицы А является минор

Аналогично могут быть найдены миноры третьего порядка матрицы А . Так как в матрице А всего три строки, то выбираем их все. Если к этим строкам выбрать три первых столбца, то получим минор третьего порядка:

Другим минором третьего порядка является:

Для данной матрицы А миноров порядка выше третьего не существует, так как

Сколько же существует миноров k -ого порядка матрицы А порядка p xn ? Немало!

Число миноров порядка k может быть вычислено по формуле:

Рангом матрицы называется наивысший порядок минора матрицы, отличного от нуля.

Ранг матрицы А обозначают как rang(A). Из определений ранга матрицы и минора матрицы можно заключить, что ранг нулевой матрицы равен нулю, а ранг ненулевой матрицы не меньше единицы.

Итак, первым методом нахождения ранга матрицы является метод перебора миноров . Этот способ основан на определении ранга матрицы.

Пусть нам требуется найти ранг матрицы А порядка p xn .

Если есть хотя бы один элемент матрицы, отличный от нуля, то ранг матрицы как минимум равен единице (так как есть минор первого порядка, не равный нулю).

Далее перебираем миноры второго порядка. Если все миноры второго порядка равны нулю, то ранг матрицы равен единице. Если существует хотя бы один ненулевой минор второго порядка, то переходим к перебору миноров третьего порядка, а ранг матрицы как минимум равен двум.

Аналогично, если все миноры третьего порядка равны нулю, то ранг матрицы равен двум. Если существует хотя бы один минор третьего порядка, отличный от нуля, то ранг матрицы как минимум равен трем, а мы преступаем к перебору миноров четвертого порядка.

Отметим, что ранг матрицы не может превышать наименьшего из чисел p и n .

Пример.

Найдите ранг матрицы
.

Решение.

1. Так как матрица ненулевая, то ее ранг не меньше единицы.

2. Один из миноров второго порядка
отличен от нуля, следовательно, ранг матрицы А не меньше двух.

3. Миноров третьего порядка

Все миноры третьего порядка равны нулю. Поэтому, ранг матрицы равен двум.

rang(A) = 2 .

Существуют другие методы нахождения ранга матрицы, которые позволяют получить результат при меньшей вычислительной работе.

Одним из таких методов является метод окаймляющих миноров . При использовании этого метода вычисления несколько сокращаются, и все же они довольно громоздки.

Существуют еще один способ нахождения ранга матрицы - с помощью элементарных преобразований (метод Гаусса).

Следующие преобразования матрицы называют элементарными :

· перестановка местами строк (или столбцов) матрицы;

· умножение всех элементов какой-либо строки (столбца) матрицы на произвольное число k , отличное от нуля;

· прибавление к элементам какой-либо строки (столбца) соответствующих элементов другой строки (столбца) матрицы, умноженных на произвольное число k .

Матрица В называется эквивалентной матрице А , если В получена из А с помощью конечного числа элементарных преобразований. Эквивалентность матриц обозначается символом « ~ » , то есть, записывается A ~ B.

Нахождение ранга матрицы с помощью элементарных преобразований матрицы основано на утверждении: если матрица В получена из матрицы А помощью конечного числа элементарных преобразований, то rang(A) = rang(B) , т.е. ранги эквивалентных матриц равны.

Суть метода элементарных преобразований заключается в приведении матрицы, ранг которой нам требуется найти, к трапециевидной (в частном случае к верхней треугольной) с помощью элементарных преобразований.

Ранг матриц такого вида очень легко найти. Он равен количеству строк, содержащих хотя бы один ненулевой элемент. А так как ранг матрицы при проведении элементарных преобразований не изменяется, то полученное значение будет рангом исходной матрицы.

Пример.

Методом элементарных преобразований найдите ранг матрицы

.

Решение.

1. Поменяем местами первую и вторую строки матрицы А , так как элемент a 11 =0 , а элемент a 21 отличен от нуля:

~

В полученной матрице элемент равен единице. В противном случае нужно было умножить элементы первой строки на . Сделаем все элементы первого столбца, кроме первого, нулевыми. Во второй строке ноль уже есть, к третьей строке прибавим первую, умноженную на 2:


Элемент в полученной матрице отличен от нуля. Умножим элементы второй строки на

Второй столбец полученной матрицы имеет нужный вид, так как элемент уже равен нулю.

Так как , а , то поменяем местами третий и четвертый столбцы и умножим третью строку полученной матрицы на :

Исходная матрица приведена к трапециевидной, ее ранг равен количеству строк, содержащих хотя бы один ненулевой элемент. Таких строк три, следовательно ранг исходной матрицы равен трем.rang(A)=3.


Обратная матрица.

Пусть имеем матрицу А .

Матрицей, обратной матрице А , называется матрица A -1 такая, что A -1 A = A A -1 = E .

Обратная матрица может существовать только для квадратной матрицы. Причем сама является той же размерности, что и исходная матрица.

Для того, чтобы квадратная матрица имела обратную, она должна быть невырожденной (т.е. Δ ≠0 ). Это условие является и достаточным для существования A -1 к матрице А . Итак, всякая невырожденная матрица имеет обратную, и, притом, единственную.

Алгоритм нахождения обратной матрицы на примере матрицы А :

1. Находим определитель матрицы. Если Δ ≠0 , то матрица A -1 существует.

2. Составим матрицу В алгебраических дополнений элементов исходной матрицы А . Т.е. в матрице В элементом i - ой строки и j - го столбца будет алгебраическое дополнение A ij элемента a ij исходной матрицы.

3. Транспонируем матрицу В и получим B t .

4. Найдем обратную матрицу, умножив полученную матрицу B t на число .

Пример.

Для данной матрицы найти обратную и выполнить проверку:

Решение

Воспользуемся ранее описанным алгоритмом нахождения обратной матрицы.

1. Для выяснения существования обратной матрицы, необходимо вычислить определитель данной матрицы. Воспользуемся правилом треугольников:

Матрица является невырожденной, следовательно, она обратима.

Найдем алгебраические дополнения всех элементов матрицы:



Из найденных алгебраических дополнений составляется матрица:

и транспонируется

Разделив каждый элемент полученной матрицы на определитель, получим матрицу, обратную к исходной:

Проверка осуществляется умножением полученной матрицы на исходную. Если обратная матрица найдена правильно, в результате умножения получится единичная матрица.

Для нахождения обратной матрицы для данной, можно воспользоваться методом Гаусса (конечно, предварительно необходимо убедиться, что матрица обратима), рассмотрение которого оставляю для самостоятельной работы.

Минором любого элемента определителя называется, определитель второго

порядка, полученный вычеркиванием из данного определителя строки и столбца, содержащих этот элемент. Так минор для элемента

для элемента :

Алгебраическим дополнением любого элемента определителя называют минор этого элемента взятый с множителем , где i – номер строки элемента, j – номер столбца. Таким образом, алгебраическое дополнение элемента :

Пример. Найти алгебраические дополнения для элементов определителя.

Теорема . Определитель равен сумме произведений элементов любого его столбца или строки на их алгебраические дополнения.

Другими словами, имеют место следующие равенства для определителя .

Доказательство этих равенств состоит из замены алгебраических дополнений их выражениями через элементы определителя, при этом получим выражение (3). Предлагается это выполнить самостоятельно. Замена определителя по одной из шести формул называется разложением определителя по элементам соответствующего столбца или строки. Эти разложения применяют для вычисления определителей.

Пример. Вычислить определитель, разложив его по элементам второго столбца.

Используя теорему о разложении определителя третьего порядка по элементам строки или столбца, можно доказать справедливость свойств 1-8 для определителей третьего порядка. Предполагается проверить справедливость этого утверждения. Свойства определителей и теорема о разложении определителя по элементам столбца или строки позволяют упростить вычисления определителей.

Пример . Вычислить определитель.

Вычислим общий множитель «2» элементов второй строки, а затем такой же общий множитель элементов третьего столбца.

Прибавим элементы первой строки к соответствующим элементам второй строки, затем третьей строки.

Разложим определитель по элементам первого столбца.


Миноры матрицы

Пусть дана квадратная матрица А, n — ого порядка. Минором некоторого элемента аij , определителя матрицы n — ого порядка называется определитель (n — 1) — ого порядка, полученный из исходного путем вычеркивания строки и столбца, на пересечении которых находится выбранный элемент аij. Обозначается Мij.

Рассмотрим на примере определителя матрицы 3 — его порядка:
Миноры и алгебраические дополнения, определитель матрицы 3 — его порядка , тогда согласно определению минора, минором М12, соответствующим элементу а12, будет определитель : При этом, с помощью миноров можно облегчать задачу вычисления определителя матрицы . Надо разложить определитель матрицы по некоторой строке и тогда определитель будет равен сумме всех элементов этой строки на их миноры. Разложение определителя матрицы 3 — его порядка будет выглядеть так:


, знак перед произведением равен (-1) n , где n = i + j.

Алгебраические дополнения:

Алгебраическим дополнением элемента аij называется его минор , взятый со знаком «+», если сумма (i + j) четное число, и со знаком «-«, если эта сумма нечетное число. Обозначается Аij.
Аij = (-1)i+j × Мij.

Тогда можно переформулировать изложенное выше свойство. Определитель матрицы равен сумме произведение элементов некоторого ряда (строки или столбца) матрицы на соответствующие им алгебраические дополнения . Пример.

В данной теме рассмотрим понятия алгебраического дополнения и минора. Изложение материала опирается на термины, пояснённые в теме "Матрицы. Виды матриц. Основные термины" . Также нам понадобятся некоторые формулы для вычисления определителей . Так как в данной теме немало терминов, относящихся к минорам и алгебраическим дополнениям, то я добавлю краткое содержание, чтобы ориентироваться в материале было проще.

Минор $M_{ij}$ элемента $a_{ij}$

$M_{ij}$ элемента $a_{ij}$ матрицы $A_{n\times n}$ именуют определитель матрицы, полученной из матрицы $A$ вычёркиванием i-й строки и j-го столбца (т.е. строки и столбца, на пересечении которых находится элемент $a_{ij}$).

Для примера рассмотрим квадратную матрицу четвёртого порядка: $A=\left(\begin{array} {cccc} 1 & 0 & -3 & 9\\ 2 & -7 & 11 & 5 \\ -9 & 4 & 25 & 84\\ 3 & 12 & -5 & 58 \end{array} \right)$. Найдём минор элемента $a_{32}$, т.е. найдём $M_{32}$. Сперва запишем минор $M_{32}$, а потом вычислим его значение. Для того, чтобы составить $M_{32}$, вычеркнем из матрицы $A$ третью строку и второй столбец (именно на пересечении третьей строки и второго столбца расположен элемент $a_{32}$). Мы получим новую матрицу, определитель которой и есть искомый минор $M_{32}$:

Этот минор несложно вычислить, используя формулу №2 из темы вычисления :

$$ M_{32}=\left| \begin{array} {ccc} 1 & -3 & 9\\ 2 & 11 & 5 \\ 3 & -5 & 58 \end{array} \right|= 1\cdot 11\cdot 58+(-3)\cdot 5\cdot 3+2\cdot (-5)\cdot 9-9\cdot 11\cdot 3-(-3)\cdot 2\cdot 58-5\cdot (-5)\cdot 1=579. $$

Итак, минор элемента $a_{32}$ равен 579, т.е. $M_{32}=579$.

Часто вместо словосочетания "минор элемента матрицы" в литературе встречается "минор элемента определителя". Суть остается неизменной: чтобы получить минор элемента $a_{ij}$ нужно вычеркнуть из исходного определителя i-ю строку и j-й столбец. Оставшиеся элементы записывают в новый определитель, который и является минором элемента $a_{ij}$. Например, найдём минор элемента $a_{12}$ определителя $\left| \begin{array} {ccc} -1 & 3 & 2\\ 9 & 0 & -5 \\ 4 & -3 & 7 \end{array} \right|$. Чтобы записать требуемый минор $M_{12}$ нам понадобится вычеркнуть из заданного определителя первую строку и второй столбец:

Чтобы найти значение данного минора используем формулу №1 из темы вычисления определителей второго и третьего порядков :

$$ M_{12}=\left| \begin{array} {cc} 9 & -5\\ 4 & 7 \end{array} \right|=9\cdot 7-(-5)\cdot 4=83. $$

Итак, минор элемента $a_{12}$ равен 83, т.е. $M_{12}=83$.

Алгебраическое дополнение $A_{ij}$ элемента $a_{ij}$

Пусть задана квадратная матрица $A_{n\times n}$ (т.е. квадратная матрица n-го порядка).

Алгебраическое дополнением $A_{ij}$ элемента $a_{ij}$ матрицы $A_{n\times n}$ находится по следующей формуле: $$ A_{ij}=(-1)^{i+j}\cdot M_{ij}, $$

где $M_{ij}$ - минор элемента $a_{ij}$.

Найдем алгебраическое дополнение элемента $a_{32}$ матрицы $A=\left(\begin{array} {cccc} 1 & 0 & -3 & 9\\ 2 & -7 & 11 & 5 \\ -9 & 4 & 25 & 84\\ 3 & 12 & -5 & 58 \end{array} \right)$, т.е. найдём $A_{32}$. Ранее мы уже находили минор $M_{32}=579$, поэтому используем полученный результат:

Обычно при нахождении алгебраических дополнений не вычисляют отдельно минор, а уж потом само дополнение. Запись минора опускают. Например, найдем $A_{12}$, если $A=\left(\begin{array} {ccc} -5 & 10 & 2\\ 6 & 9 & -4 \\ 4 & -3 & 1 \end{array} \right)$. Согласно формуле $A_{12}=(-1)^{1+2}\cdot M_{12}=-M_{12}$. Однако чтобы получить $M_{12}$ достаточно вычеркнуть первую строку и второй столбец матрицы $A$, так зачем же вводить лишнее обозначение для минора? Сразу запишем выражение для алгебраического дополнения $A_{12}$:

Минор k-го порядка матрицы $A_{m\times n}$

Если в предыдущих двух пунктах мы говорили лишь о квадратных матрицах, то здесь поведём речь также и о прямоугольных матрицах, у которых количество строк вовсе не обязательно равняется количеству столбцов. Итак, пусть задана матрица $A_{m\times n}$, т.е. матрица, содержащая m строк и n столбцов.

Минором k-го порядка матрицы $A_{m\times n}$ называется определитель, элементы которого расположены на пересечении k строк и k столбцов матрицы $A$ (при этом предполагается, что $k≤ m$ и $k≤ n$).

Например, рассмотрим такую матрицу:

$$A=\left(\begin{array} {cccc} -1 & 0 & -3 & 9\\ 2 & 7 & 14 & 6 \\ 15 & -27 & 18 & 31\\ 0 & 1 & 19 & 8\\ 0 & -12 & 20 & 14\\ 5 & 3 & -21 & 9\\ 23 & -10 & -5 & 58 \end{array} \right) $$

Запишем для неё какой-либо минор третьего порядка. Чтобы записать минор третьего порядка нам потребуется выбрать какие-либо три строки и три столбца данной матрицы. Например, возьмём строки №2, №4, №6 и столбцы №1, №2, №4. На пересечении этих строк и столбцов будут располагаться элементы требуемого минора. На рисунке элементы минора показаны синим цветом:

$$ \left(\begin{array} {cccc} -1 & 0 & -3 & 9 \\ \boldblue{2} & \boldblue{7} & 14 & \boldblue{6} \\ 15 & -27 & 18 & 31\\ \boldblue{0} & \boldblue{1} & 19 & \boldblue{8}\\ 0 & -12 & 20 & 14\\ \boldblue{5} & \boldblue{3} & -21 & \boldblue{9}\\ 23 & -10 & -5 & 58 \end{array} \right);\; M=\left|\begin{array} {ccc} 2 & 7 & 6 \\ 0 & 1 & 8 \\ 5 & 3 & 9 \end{array} \right|. $$

Миноры первого порядка находятся на пересечении одной строки и одного столбца, т.е. миноры первого порядка равны элементам заданной матрицы.

Минор k-го порядка матрицы $A_{m\times n}=(a_{ij})$ называется главным , если на главной диагонали данного минора находятся только главные диагональные элементы матрицы $A$.

Напомню, что главными диагональными элементами именуют те элементы матрицы, у которых индексы равны: $a_{11}$, $a_{22}$, $a_{33}$ и так далее. Например, для рассмотренной выше матрицы $A$ такими элементами будут $a_{11}=-1$, $a_{22}=7$, $a_{33}=18$, $a_{44}=8$. На рисунке они выделены зелёным цветом:

$$\left(\begin{array} {cccc} \boldgreen{-1} & 0 & -3 & 9\\ 2 & \boldgreen{7} & 14 & 6 \\ 15 & -27 & \boldgreen{18} & 31\\ 0 & 1 & 19 & \boldgreen{8}\\ 0 & -12 & 20 & 14\\ 5 & 3 & -21 & 9\\ 23 & -10 & -5 & 58 \end{array} \right) $$

Например, если в матрице $A$ мы вычеркнем строки и столбцы с номерами 1 и 3, то на их пересечении будут расположены элементы минора второго порядка, на главной диагонали которого будут находиться только диагональные элементы матрицы $A$ (элементы $a_{11}=-1$ и $a_{33}=18$ матрицы $A$). Следовательно, мы получим главный минор второго порядка:

$$ M=\left|\begin{array} {cc} \boldgreen{-1} & -3 \\ 15 & \boldgreen{18} \end{array} \right| $$

Естественно, что мы могли взять иные строки и столбцы, - например, с номерами 2 и 4, получив при этом иной главный минор второго порядка.

Пусть некий минор $M$ k-го порядка матрицы $A_{m\times n}$ не равен нулю, т.е. $M\neq 0$. При этом все миноры, порядок которых выше k, равны нулю. Тогда минор $M$ называют базисным , а строки и столбцы, на которых расположены элементы базисного минора, именуют базисными строками и базисными столбцами .

Для примера рассмотрим такую матрицу:

$$A=\left(\begin{array} {ccc} -1 & 0 & 3 & 0 & 0 \\ 2 & 0 & 4 & 1 & 0\\ 1 & 0 & -2 & -1 & 0\\ 0 & 0 & 0 & 0 & 0 \end{array} \right) $$

Запишем минор этой матрицы, элементы которого расположены на пересечении строк №1, №2, №3 и столбцов с №1, №3, №4. Мы получим минор третьего порядка (его элементы выделены в матрице $A$ фиолетовым цветом):

$$ \left(\begin{array} {ccc} \boldpurple{-1} & 0 & \boldpurple{3} & \boldpurple{0} & 0 \\ \boldpurple{2} & 0 & \boldpurple{4} & \boldpurple{1} & 0\\ \boldpurple{1} & 0 & \boldpurple{-2} & \boldpurple{-1} & 0\\ 0 & 0 & 0 & 0 & 0 \end{array} \right);\; M=\left|\begin{array} {ccc} -1 & 3 & 0 \\ 2 & 4 & 1 \\ 1 & -2 & -1 \end{array} \right|. $$

Найдём значение этого минора, используя формулу №2 из темы вычисления определителей второго и третьего порядков :

$$ M=\left| \begin{array} {ccc} -1 & 3 & 0\\ 2 & 4 & 1 \\ 1 & -2 & -1 \end{array} \right|=4+3+6-2=11. $$

Итак, $M=11\neq 0$. Теперь попробуем составить любой минор, порядок которого выше трёх. Чтобы составить минор четвёртого порядка, нам придётся использовать четвёртую строку, однако все элементы этой строки равны нулю. Следовательно, в любом миноре четвёртого порядка будет нулевая строка, а это означает, что все миноры четвёртого порядка равны нулю. Миноры пятого и более высоких порядков составить мы не можем, так как матрица $A$ имеет всего 4 строки.

Мы нашли минор третьего порядка, не равный нулю. При этом все миноры высших порядков равны нулю, следовательно, рассмотренный нами минор - базисный. Строки матрицы $A$, на которых расположены элементы этого минора (первая, вторая и третья), - базисные строки, а первый, третий и четвёртый столбцы матрицы $A$ - базисные столбцы.

Данный пример, конечно, тривиальный, так как его цель - наглядно показать суть базисного минора. Вообще, базисных миноров может быть несколько, и обычно процесс поиска такого минора куда сложнее и объёмнее.

Введём ещё одно понятие - окаймляющий минор.

Пусть некий минор k-го порядка $M$ матрицы $A_{m\times n}$ расположен на пересечении k строк и k столбцов. Добавим к набору этих строк и столбцов ещё одну строку и столбец. Полученный минор (k+1)-го порядка именуют окаймляющим минором для минора $M$.

Для примера обратимся к такой матрице:

$$A=\left(\begin{array} {ccccc} -1 & 2 & 0 & -2 & -14\\ 3 & -17 & -3 & 19 & 29\\ 5 & -6 & 8 & -9 & 41\\ -5 & 11 & 19 & -20 & -98\\ 6 & 12 & 20 & 21 & 54\\ -7 & 10 & 14 & -36 & 79 \end{array} \right) $$

Запишем минор второго порядка, элементы которого расположены на пересечении строк №2 и №5, а также столбцов №2 и №4. Эти элементы выделены в матрице красным цветом:

$$ \left(\begin{array} {ccccc} -1 & 2 & 0 & -2 & -14\\ 3 & \boldred{-17} & -3 & \boldred{19} & 29\\ 5 & -6 & 8 & -9 & 41\\ -5 & 11 & 19 & -20 & -98\\ 6 & \boldred{12} & 20 & \boldred{21} & 54\\ -7 & 10 & 14 & -36 & 79 \end{array} \right);\; M=\left|\begin{array} {ccc} -17 & 19 \\ 12 & 21 \end{array} \right|. $$

Добавим к набору строк, на которых лежат элементы минора $M$, ещё строку №1, а к набору столбцов - столбец №5. Получим новый минор $M"$ (уже третьего порядка), элементы которого расположены на пересечении строк №1, №2, №5 и столбцов №2, №4, №5. Элементы минора $M$ на рисунке выделены красным цветом, а элементы, которые мы добавляем к минору $M$ - синим:

$$ \left(\begin{array} {ccccc} -1 & \boldblue{2} & 0 & \boldblue{-2} & \boldblue{-14}\\ 3 & \boldred{-17} & -3 & \boldred{19} & \boldblue{29}\\ 5 & -6 & 8 & -9 & 41\\ -5 & 11 & 19 & -20 & -98\\ 6 & \boldred{12} & 20 & \boldred{21} & \boldblue{54}\\ -7 & 10 & 14 & -36 & 79 \end{array} \right);\; M"=\left|\begin{array} {ccc} 2 & -2 & -14 \\ -17 & 19 & 29 \\ 12 & 21 & 54 \end{array} \right|. $$

Минор $M"$ является окаймляющим минором для минора $M$. Аналогично, добавляя к набору строк, на которых лежат элементы минора $M$, строку №4, а к набору столбцов - столбец №3, получим минор $M""$ (минор третьего порядка):

$$ \left(\begin{array} {ccccc} -1 & 2 & 0 & -2 & -14\\ 3 & \boldred{-17} & \boldblue{-3} & \boldred{19} & 29\\ 5 & -6 & 8 & -9 & 41\\ -5 & \boldblue{11} & \boldblue{19} & \boldblue{-20} & -98\\ 6 & \boldred{12} & \boldblue{20} & \boldred{21} & 54\\ -7 & 10 & 14 & -36 & 79 \end{array} \right);\; M""=\left|\begin{array} {ccc} -17 & -3 & 19 \\ 11 & 19 & -20 \\ 12 & 20 & 21 \end{array} \right|. $$

Минор $M""$ также является окаймляющим минором для минора $M$.

Минор k-го порядка матрицы $A_{n\times n}$. Дополнительный минор. Алгебраическое дополнение к минору квадратной матрицы.

Вновь вернёмся к квадратным матрицам. Введём понятие дополнительного минора.

Пусть задан некий минор $M$ k-го порядка матрицы $A_{n\times n}$. Определитель (n-k)-го порядка, элементы которого получены из матрицы $A$ после вычеркивания строк и столбцов, содержащих минор $M$, называется минором, дополнительным к минору $M$.

Для примера рассмотрим квадратную матрицу пятого порядка:

$$ A=\left(\begin{array}{ccccc} -1 & 2 & 0 & -2 & -14\\ 3 & -17 & -3 & 19 & 29\\ 5 & -6 & 8 & -9 & 41\\ -5 & 11 & 16 & -20 & -98\\ -7 & 10 & 14 & -36 & 79 \end{array} \right) $$

Выберем в ней строки №1 и №3, а также столбцы №2 и №5. На пересечении оных строк и столбцов будут элементы минора $M$ второго порядка. Эти элементы выделены в матрице $A$ зелёным цветом:

$$ \left(\begin{array}{ccccc} -1 & \boldgreen{2} & 0 & -2 & \boldgreen{-14}\\ 3 & -17 & -3 & 19 & 29\\ 5 & \boldgreen{-6} & 8 & -9 & \boldgreen{41}\\ -5 & 11 & 16 & -20 & -98\\ -7 & 10 & 14 & -36 & 79 \end{array} \right);\; M=\left|\begin{array}{cc} 2 & -14 \\ -6 & 41 \end{array} \right|. $$

Теперь уберём из матрицы $A$ строки №1 и №3 и столбцы №2 и №5, на пересечении которых находятся элементы минора $M$ (элементы убираемых строк и столбцов показаны красным цветом на рисунке ниже). Оставшиеся элементы образуют минор $M"$:

$$ \left(\begin{array}{ccccc} \boldred{-1} & \boldred{2} & \boldred{0} & \boldred{-2} & \boldred{-14}\\ 3 & \boldred{-17} & -3 & 19 & \boldred{29}\\ \boldred{5} & \boldred{-6} & \boldred{8} & \boldred{-9} & \boldred{41}\\ -5 & \boldred{11} & 16 & -20 & \boldred{-98}\\ -7 & \boldred{10} & 14 & -36 & \boldred{79} \end{array} \right);\; M"=\left|\begin{array} {ccc} 3 & -3 & 19 \\ -5 & 16 & -20 \\ -7 & 14 & -36 \end{array}\right|. $$

Минор $M"$, порядок которого равен $5-2=3$, является минором, дополнительным к минору $M$.

Алгебраическим дополнением к минору $M$ квадратной матрицы $A_{n\times n}$ называется выражение $(-1)^{\alpha}\cdot M"$, где $\alpha$ - сумма номеров строк и столбцов матрицы $A$, на которых расположены элементы минора $M$, а $M"$ - минор, дополнительный к минору $M$.

Словосочетание "алгебраическое дополнение к минору $M$" часто заменяют словосочетанием "алгебраическое дополнение минора $M$".

Для примера рассмотрим матрицу $A$, для которой мы находили минор второго порядка $ M=\left| \begin{array} {ccc} 2 & -14 \\ -6 & 41 \end{array} \right| $ и дополнительный к нему минор третьего порядка: $M"=\left| \begin{array} {ccc} 3 & -3 & 19\\ -5 & 16 & -20 \\ -7 & 14 & -36 \end{array} \right|$. Обозначим алгебраическое дополнение минора $M$ как $M^*$. Тогда согласно определению:

$$ M^*=(-1)^\alpha\cdot M". $$

Параметр $\alpha$ равен сумме номеров строк и столбцов, на которых находится минор $M$. Этот минор расположен на пересечении строк №1, №3 и столбцов №2, №5. Следовательно, $\alpha=1+3+2+5=11$. Итак:

$$ M^*=(-1)^{11}\cdot M"=-\left| \begin{array} {ccc} 3 & -3 & 19\\ -5 & 16 & -20 \\ -7 & 14 & -36 \end{array} \right|. $$

В принципе, используя формулу №2 из темы вычисления определителей второго и третьего порядков , можно довести вычисления до конца, получив значение $M^*$:

$$ M^*=-\left| \begin{array} {ccc} 3 & -3 & 19\\ -5 & 16 & -20 \\ -7 & 14 & -36 \end{array} \right|=-30. $$

    Алгебраическое дополнение - понятие матричной алгебры; применительно к элементу aij квадратной матрицы А образуется путем умножения минора элемента aij на (1)i+j; обозначается Аij: Aij=(1)i+jMij, где Mij минор элемента aij матрицы A=, т.е. определитель… … Экономико-математический словарь

    алгебраическое дополнение - Понятие матричной алгебры; применительно к элементу aij квадратной матрицы А образуется путем умножения минора элемента aij на (1)i+j; обозначается Аij: Aij=(1)i+jMij, где Mij минор элемента aij матрицы A=, т.е. определитель матрицы,… … Справочник технического переводчика

    См. в ст. Определитель … Большая советская энциклопедия

    Для минора М число, равное где М минор порядка k, расположенный в строках с номерами и столбцах с номерами некоторой квадратной матрицы Апорядка п; определитель матрицы порядка n k, полученной из матрицы Авычеркиванием строк и столбцов минора М;… … Математическая энциклопедия

    В Викисловаре есть статья «дополнение» Дополнение может означать … Википедия

    Операция, к рая ставит в соответствие подмножеству Мданного множества Xдругое подмножество так, что если известны Ми N, то тем или иным способом может быть восстановлено множество X. В зависимости от того, какой структурой наделено множество X,… … Математическая энциклопедия

    Или детерминант, в математике запись чисел в виде квадратной таблицы, в соответствие которой ставится другое число (значение определителя). Очень часто под понятием определитель имеют в виду как значение определителя, так и форму его записи.… … Энциклопедия Кольера

    О теореме из теории вероятностей см. статью Локальная теорема Муавра Лапласа. Теорема Лапласа одна из теорем линейной алгебры. Названа в честь французского математика Пьера Симона Лапласа (1749 1827), которому приписывают формулирование… … Википедия

    - (Laplacian matrix) одно из представлений графа с помощью матрицы. Матрица Кирхгофа используется для подсчета остовных деревьев данного графа (матричная теорема о деревьях), а также используется в спектральной теории графов. Содержание 1… … Википедия

    Уравнением называется математическое соотношение, выражающее равенство двух алгебраических выражений. Если равенство справедливо для любых допустимых значений входящих в него неизвестных, то оно называется тождеством; например, соотношение вида… … Энциклопедия Кольера

Книги

  • Дискретная математика , А. В. Чашкин. 352 стр. Учебник состоит из 17 глав по основным разделам дискретной математики: комбинаторному анализу, теории графов, булевым функциям, сложности вычисления и теории кодирования. Содержит…
Понравилось? Лайкни нас на Facebook