Технические средства и методы обработки информации. Классификация технических средств обработки информации. Функциональные возможности ЭВМ обусловливают важнейшие технико-эксплуатационные характеристики

Появление компьютера стало возможным благодаря трем основ­ным техническим достижениям:

Изобретению электронного переключателя - простейшей схемы, замыкающей и размыкающей электрическую цепь;

Разработке цифрового кодирования информации;

Созданию устройств искусственной памяти, позволяющих хранить программы и данные, а также автоматически эти программы выполнять.

1. Первый счетный инструмент появился в V-IV вв. до н. э. и носил название абак . Предположительно считается, что его роди­ной могли быть Греция или Египет (в перево­де с греческого «абак» означает «узнать»). Он представлял собой доску, расчерченную на колонки, в которых можно было размещать какие-либо предметы, например камешки, по позиционному принципу. На абаке вся Европа считала приблизительно до XII в. Следует отметить, что модифицированный вариант абака - «рус­ские» счеты появились приблизительно в III в. н. э. и с успехом ис­пользовались вплоть до сегодняшнего дня.

2. Первое механическое вычислительное устройство, названное суммирующей машиной, было сконструировано в 1642 г. французским философом, математиком и физиком Блезом Паскалем15. В его основе лежала система сцепленных между собой специальных зуб­чатых колес с нанесенными на них цифровыми: делениями («паскалевы колеса»), которые в дальнейшем, вплоть до наших дней, стали в усовершенствованном виде использоваться во всех механических счетных устройства. Машина производила только сложение и вы­читание. До настоящего времени сохранилось 7экземпляров этой машины (всего их было построено Паскалем более 50 штук различ­ной модификации). Одна из них хранится в Музее искусств и реме­сел в Париже

3. В 1673 г. немецкий ученый и мате­матик внес ряд конструкторских доработок в машину Паскаля (придумал карет­ку и ручку), которые позволили резко увеличить скорость выполнения опе­раций. Устройство получило название калькулятор Лейбница и позволяло уже умножать и делить. Умножение было реализовано как многократное сложение, а деление - как многократное вычитание. Эти машины, с некоторыми усовершенствованиями, стали называть арифмомет­ рами . Они использовались еще в 1980-х: гг.

4. В 1804 г. французский инженер Жозеф Мариг Жаккар полностью автоматизировал ткацкий станок, работа которого программиро­валась сначала с помощью перфоленты а позже - с помощью набора перфокарт (жаккардовое полотно с вышивкой). Социальным последствием этого новшества явилось восстание ткачей, так как автомат лишил их работы.

5. В 1822 г. английский ученый и изо­бретатель Чарльз Бэббидж разработал и построил модель механической вы­числительной машины для расчетов математических таблиц. Она получила название разностная машина, которой заинтересовались научные и правитель­ственные круги Англии.

6. В 1847-1854 гг. английский математик Джордж Буль разрабо­тал принципиально новый математический аппарат, базирующий­ся на двоичной системе счисления, который получил название буле­ ва алгебра. Логические действия, используемые в ней, оперируют лишь с двумя основными понятиями - «истина» и «ложь», которые соответственно могут быть за­кодированы единицей и нулем. Булева алгебра заложила основы двоичного кодирования инфор­мации.

7. Попытки построить машину Ч. Беббиджа предпринимались неоднократно. Только в конце XIX в. с появлением электричества американский изобретатель Герман Холлерит смог полностью воплотить в жизнь его идеи. В 1890 г. он создает вычислительное устройство для решения сложных статистических задач. Машина получила название статистический табулятор. Информация кодировалась на специальных перфокартах, которые размещались в определенном порядке. Специальный электричес­кий датчик распознавал отверстия в перфокартах и посылал сигна­лы в счетное устройство.

Данная машина была настолько удачной, что она использовалась для обработки данных переписи населения США. В 1897 г. Россия купила эту машину (рис. 10) для обработки результатов своей пер­вой переписи населения. В 1924 г. (за 5 лет до смерти) Г. Холлерит смог создать свою фир­му, которая позже получила название International Business Machines Corporation (IBM).

В 1936-1938 гг. Клод Шеннон, американский математик и элек­тротехник, связал двоичное кодирование информации и булеву алгебру с работой электрических схем, чем положил начало науке, получившей название теория информации. Им же были введены следующие понятия:

бит (Binary digit) - двоичный раз­ряд, представляющий собой наименьшую единицу информации в двоичном коде (применяется в современных ЭВМ);

байт = 8 бит - единица информации, обрабатываемая компьютером как единое целое;

полубайт - 4 бита;

машинное слово - представляет собой цепочку двоичных разрядов длиной в несколько байт.

8. Перед Второй мировой войной и во время войны появилось множество новых разработок вычислительной техники, которые использовали весь накопленный теоретический и практический опыт. Наиболее внушительным достижением этого периода была вы­числительная машина «Марк-1», построенная в 1943-1944 гг. аме­риканцем Говардом Эйкеном при содействии и финансировании военно-морского флота США и технической поддержке фирмы IBM.

9. В 1946 г. двое ученых Пенсильванского университета (США) Джон Мочли и Проспер Экерт сконструировали первую в мире электронную вычислительную ма­шину «ЭНИАК» - электронный ин­тегратор и калькулятор (ENIAC) на электронных лампах с современным цифровым принципом кодирования информации. Ее быст­родействие составляло всего 5 тысяч операций в секунду, что, однако, было примерно в 1000 раз выше, чем у ма­шины МАРК-1.

10. Проект первых ЭВМ заинтересовал из­вестного американского математика Джо­на фон Неймана, и он занялся разработкой такой их логической схемы, которая была бы способна гибко использовать запомина­емую программу, а также позволила бы эту программу изменять, не перестраивая всей схемы машины. Он первый выделил в устройстве ЭВМ че­тыре основных блока: арифметико-логичес­кое устройство, устройство управления, уст­ройство памяти и устройство ввода-вывода. Структура компьютера, включающая все перечисленные блоки, позже получила название классической архитектуры фон Неймана. Помимо архитектуры фон Нейман разработал и общие принципы работы компьютера.

11. В 1949 г. в Кембриджском университете (Англия) под руковод­ством профессора Морриса Уилкса была построена первая в мире ЭВМ с хранимой в памяти программой. Она носила название «ЭД-САК» (EDSAC) и полностью воплотила в себе идеи фон Неймана.

12. Первая отечественная вычислительная машина МЭСМ (Малая электронная счетная машина) была разработана в 1950 г. под руко­водством академика (рис. 13). МЭСМ имела более уни­версальное назначение, чем первые зарубежные ЭВМ, обладала быст­родействием 50 операций в секунду, могла хранить в оперативной па­мяти 31 число и 63 команды. Внешней памятью являлся магнитный барабан с емкостью в 5000 машинных слов.

Общие принципы организации работы ЭВМ

В настоящее время понятия «ЭВМ» и «компьютер» являются си­нонимами, причем последний более распространен (от англ. compu­ter- вычислитель). Действительно, первые ЭВМ предназначались для выполнения сложных расчетов, но в дальнейшем оказалось, что они могут обрабатывать информацию любого рода, если она может быть представлена в двоичном коде.

Под ЭВМ (компьютером) будем понимать программируемое электронное устройство, предназначенное для сбора, хране­ния, обработки, передачи и выдачи информации

ЭВМ включает в себя две части: аппаратную (hardware) и комп­лекс программ (software).

Архитектура ЭВМ. Принципы фон Неймана

Несмотря на большое разнообразие существующих в настоящее время ЭВМ, в основу их построения и работы заложены общие фун­даментальные принципы, которые впервые были сформулированы выдающимся американским математиком Джоном фон Нейманом.

Принцип общего устройства ЭВМ

Для того чтобы быть универсальным и эффективным средством для обработки информации, любая ЭВМ должна состоять из следую­щих основных устройств:

Арифметико-логического устройства (АЛУ), предназначенного для выполнения арифметических и логических операций;

Устройства управления (УУ), которое организует процесс автоматического выполнения программ;

Оперативной (основной) памяти (ОП), предназначенной для хранения программ и данных;

Устройства ввода-вывода информации (УВВ).

Впоследствии такая организация ЭВМ получила название класси­ ческой архитектуры фон Неймана . Архитектура фон Нейма­на является ядром при построении всех современных компьютеров.

Принцип произвольного доступа к основной памяти

Память ЭВМ должна состоять из некоторого количества прону­мерованных ячеек, в которых может храниться информация любого рода, закодированная в двоичном коде. Доступ к ней осуществляет­ся по номеру ячейки (адресу).

3. Принцип хранимой программы

Поскольку каждая команда программы кодируется в двоич­ном коде в виде последовательности нулей и единиц, она может быть помещена в память компьютера, как и любые другие данные. Таким образом, сама программа (набор команд) хранится в памяти вместе с обрабатываемыми данными.

4. Принцип программного управления

Отличие ЭВМ от арифмометра (калькулятора) состоит в том, что она умеет выполнять без участия человека не одну команду, а целую последовательность команд (программу). Устройство управления исполняет последовательность команд, находящихся в памяти ма­шины, автоматически, без участия человека.

Технологический процесс обработки данных в информационных системах осуществляется при помощи:

    технических средств сбора и регистрации данных;

    средств телекоммуникаций;

    систем хранения, поиска и выборки данных;

    средств вычислительной обработки данных;

    технических средств оргтехники.

В современных информационных системах технические средства обработки данных используются комплексно, на основе технико-экономического расчета целесообразности их применения, с учетом соотношения “цена/качество” и надежности работы технических средств.

Информационные технологии

Информационные технологии можно определить как совокупность методов – приемов и алгоритмов обработки данных и инструментальных средств – программных и технических средств обработки данных.

Информационные технологии можно условно разделить на категории:

    Базовые информационные технологии – это универсальные технологические операции обработки данных, как правило, не зависящие от содержания обрабатываемой информации, например, запуск программ на выполнение, копирование, удаление, перемещение и поиск файлов и т.п. Они основаны на использовании широко применяемых программных и технических средств обработки данных.

    Специальные информационные технологии – комплекс информационно связанных базовых информационных технологий, предназначенных для выполнения специальных операций с учетом содержания и/или формы представления данных.

Информационные технологии являются необходимым базисом для создания информационных систем.

Информационные системы

Информационная система (ИС) представляет собой коммуникационную систему по сбору, передаче, переработке информации об объекте, снабжающую работников различного ранга информацией для реализации функции управления.

Пользователями ИС являются организационные единицы управления – структурные подразделения, управленческий персонал, исполнители. Содержательную основу ИС составляют функциональные компоненты – модели, методы и алгоритмы формирования управляющей информации. Функциональная структура ИС представляет собой совокупность функциональных компонентов: подсистем, комплексов задач, процедур обработки информации, определяющих последовательность и условия их выполнения.

Внедрение информационных систем производится с целью повышения эффективности производственно-хозяйственной деятельности объекта за счет не только обработки и хранения рутинной информации, автоматизации конторских работ, но и за счет принципиально новых методов управления. Эти методы основаны на моделировании действий специалистов организации при принятии решений (методы искусственного интеллекта, экспертные системы и т.п.), использовании современных средств телекоммуникаций (электронная почта, телеконференции), глобальных и локальных вычислительных сетей и т. д.

Классификация ИС проводится по следующим признакам:

    характер обработки информации;

    масштаб и интеграция компонентов ИС;

    информационно-технологическая архитектура ИС.

По характеру обработки информации и сложности алгоритмов обработки ИС принято делить на два больших класса:

    ИС для оперативной обработки данных. Это традиционные ИС для учета и обработки первичных данных большого объема с применением жестко регламентированных алгоритмов, фиксированной структуры базы данных (БД) и т.п.

    ИС поддержки и принятия решений . Они ориентированы на аналитическую обработку больших объемов информации, интеграцию разнородных источников данных, использование методов и средств аналитической обработки.

В настоящее время сложились основные информационно-технологические архитектуры:

    ИС с централизованной обработкой данных;

    архитектура вида “файл-сервер”;

    архитектура вида “клиент-сервер”.

Централизованная обработка предполагает объединение на одном компьютере ПС пользовательского интерфейса, приложений и БД.

В архитектуре файл-сервер ” многим пользователям сети предоставляются файлы главного компьютера сети, называемого файл-сервером . Это могут быть отдельные файлы пользователей, файлы баз данных и программы приложений. Вся обработка данных производится на компьютерах пользователей. Такой компьютер называется рабочей станцией (РС). На ней устанавливаются ПС пользовательского интерфейса и приложений, которые могут вводиться как с устройств ввода РС, так и передаваться по сети с файл-сервера. Файл-сервер может использоваться также для централизованного хранения файлов отдельных пользователей, пересылаемых ими по сети с РС. Архитектура “файл-сервер ” применяется преимущественно в локальных компьютерных сетях.

В архитектуре клиент-сервер ” программное обеспечение ориентировано не только на коллективное использование ресурсов, но и на их обработку в месте размещения ресурса по запросам пользователей. Программные системы архитектуры “клиент-сервер” состоят из двух частей: программного обеспечения сервера и программного обеспечения пользователя-клиента. Работа этих систем организуется следующим образом: программы-клиенты выполняются на компьютере пользователя и посылают запросы к программе-серверу, которая работает на компьютере общего доступа. Основная обработка данных производится мощным сервером, а на компьютер пользователя посылаются только результаты выполнения запроса. Так, например, сервер баз данных используется в мощных СУБД, таких как Microsoft SQL Server, Oracle и др., работающих с распределенными базами данных. Серверы баз данных рассчитаны на работу с большими объемами данных (десятки гигабайт и более) и на большое число пользователей и обеспечивают при этом высокую производительность, надежность и защищенность. Архитектура “клиент-сервер” в определенном смысле является основной в приложениях глобальных компьютерных сетей.

Обработка информации - получение одних информационных объектов из других информационных объектов путем выполнения некоторых алгоритмов.

Обработка является одной из основных операций, выполняемых над информацией, и главным средством увеличения объёма и разнообразия информации.

Средства обработки информации - это всевозможные устройства и системы, созданные человечеством, и в первую очередь, компьютер - универсальная машина для обработки информации.

Компьютеры обрабатывают информацию путем выполнения некоторых алгоритмов.

Живые организмы и растения обрабатывают информацию с помощью своих органов и систем.

Обработка информации - процесс планомерного изменения содержания или формы представления информации.

Обработка информации производится в соответствии с определенными правилами некоторым субъектом или объектом (например, человеком или автоматическим устройством). Будем его называть исполнителем обработки информации.

Исполнитель обработки, взаимодействуя с внешней средой, получает из нее входную информацию, которая подвергается обработке. Результатом обработки является выходная информация, передаваемая внешней среде. Таким образом, внешняя среда выступает в качестве источника входной информации и потребителя выходной информации.

Обработка информации происходит по определенным правилам, известным исполнителю. Правила обработки, представляющие собой описание последовательности отдельных шагов обработки, называются алгоритмом обработки информации.

Исполнитель обработки должен иметь в своем составе обрабатывающий блок, который назовем процессором, и блок памяти, в котором сохраняются как обрабатываемая информация, так и правила обработки (алгоритм).

Объясняя тему “Обработка информации”, следует приводить примеры обработки, как связанные с получением новой информации, так и связанные с изменением формы представления информации.

Первый тип обработки: обработка, связанная с получением новой информации, нового содержания знаний. К этому типу обработки относится решение математических задач. К этому же типу обработки информации относится решение различных задач путем применения логических рассуждений.

Например, следователь по некоторому набору улик находит преступника; человек, анализируя сложившиеся обстоятельства, принимает решение о своих дальнейших действиях; ученый разгадывает тайну древних рукописей и т.п.

Второй тип обработки: обработка, связанная с изменением формы, но не изменяющая содержания. К этому типу обработки информации относится, например, перевод текста с одного языка на другой: изменяется форма, но должно сохраниться содержание. Важным видом обработки для информатики является кодирование. Кодирование - это преобразование информации в символьную форму, удобную для ее хранения, передачи, обработки.

Структурирование данных также может быть отнесено ко второму типу обработки. Структурирование связано с внесением определенного порядка, определенной организации в хранилище информации. Расположение данных в алфавитном порядке, группировка по некоторым признакам классификации, использование табличного или графового представления - все это примеры структурирования.

Особым видом обработки информации является поиск. Задача поиска обычно формулируется так: имеется некоторое хранилище информации - информационный массив (телефонный справочник, словарь, расписание поездов и пр.), требуется найти в нем нужную информацию, удовлетворяющую определенным условиям поиска (телефон данной организации, перевод данного слова на английский язык, время отправления данного поезда). Алгоритм поиска зависит от способа организации информации. Если информация структурирована, то поиск осуществляется быстрее, его можно оптимизировать.

Системы обработки информации

Различаются следующие способы обработки данных: централизованная, децентрализованная, распределенная и интегрированная.

Централизованная предполагает наличие ВЦ. При этом способе пользователь доставляет на ВЦ исходную информацию и получают результаты обработки в виде результативных документов. Особенностью такого способа обработки являются сложность и трудоемкость налаживания быстрой, бесперебойной связи, большая загруженность ВЦ информацией (т. к. велик ее объем), регламентацией сроков выполнения операций, организация безопасности системы от возможного несанкционированного доступа.

Децентрализованная обработка. Этот способ связан с появлением ПЭВМ, дающих возможность автоматизировать конкретное рабочие место. В настоящие время существуют три вида технологий децентрализованной обработки данных.

Первая основывается на персональных компьютерах, не объединенных в локальную сеть (данные хранятся в отдельных файлах и на отдельных дисках). Для получения показателей производится перезапись информации на компьютер. Недостатки: отсутствие взаимоувязки задач, невозможность обработки больших объемов информации, низкая зашита от несанкционированного доступа.

Второй: ПК объединенные в локальную сеть, что ведет к созданию единых файлов данных (но он не рассчитан на большие объемы информации).

Третий: ПК объединенные в локальную сеть, в которую включаются специальные серверы (с режимом «клиент-сервер»).

Распределенный способ обработки данных основан на распределении функций обработки между различными ЭВМ, включенными в сеть. Этот способ может быть реализован двумя путями: первый предполагает установку ЭВМ в каждом узле сети (или на каждом уровне системы), при этом обработка данных осуществляется одной или несколькими ЭВМ в зависимости от реальных возможностей системы и ее потребностей на текущий момент времени. Второй путь – размещение большого числа различных процессоров внутри одной системы. Такой путь применяется в системах обработки банковской и финансовой информации, там, где необходима сеть обработки данных (филиалы, отделения и т.д.). Преимущества распределенного способа: возможность обрабатывать в заданные сроки любой объем данных; высокая степень надежности, так как при отказе одного технического средства есть возможность моментальной замены его на другой; сокращение времени и затрат на передачу данных; повышение гибкости систем, упрощение разработки и эксплуатации программного обеспечения и т.д. Распределенный способ основывается на комплексе специализированных процессоров, т.е. каждая ЭВМ предназначена для решения определенных задач, или задач своего уровня.

Следующий способ обработки данных – интегрированный. Он предусматривает создание информационной модели управляемого объекта, то есть создание распределенной базы данных. Такой способ обеспечивает максимальное удобство для пользователя. С одной стороны, базы данных предусматривают коллективное пользование и централизованное управление. С другой стороны, объем информации, разнообразие решаемых задач требуют распределения базы данных. Технология интегрированной обработки информации позволяет улучшить качество, достоверность и скорость обработки, т. к. обработка производится на основе единого информационного массива, однократно введенного в ЭВМ. Особенностью этого способа является отделение технологически и по времени процедуры обработки от процедур сбора, подготовки и ввода данных.

В современных системах обработки информации используются цифровые технологии, исключающие бумажный носитель и осуществляющие обмен данными по сети между АРМ технологии предполагают также объединение совместных усилий группы сотрудников над решением какой-либо задачи (т.е. организацию в сети рабочей группы), обмен мнениями в ходе обсуждения в сети какого-либо вопроса в режиме реального времени (телеконференция), оперативный обмен материалами через электронную почту, электронные доски объявлений и т.п. Для подобных систем, охватывающих работу предприятия в целом, получил распространение термин «корпоративные системы управления бизнес-процессами». Для подобных систем характерно использование технологии «клиент-сервер», в том числе и подключение удаленных пользователей через глобальную сеть Internet. Не редкость, когда система объединяет в общее информационное пространство более чем 40 тысяч пользователей, размещающихся по разным странам и континентам. Одним из таких примеров может служить компания McDonalds, имеющая свои подразделения по всему миру, в том числе и в Украине.

Обработка цифровой информации

Практически любое инженерное устройство имеет целью своего функционирования то или иное преобразование энергии или преобразование информации. Задачей любой системы управления в самом общем смысле является обработка информации о текущем режиме работы управляемого объекта и выработка на основе этого управляющих сигналов с целью приближения текущего режима работы объекта к заданному. Под обработкой информации в данном случае подразумевается решение тем или иным способом уравнений состояния системы.

В электронных устройствах существуют два основных способа обработки информации: аналоговый и цифровой.

Принципиальной особенностью аналогового способа обработки информации является возможность плавного в известных пределах) изменения величин электрических сигналов, соответствующих переменным системы. Все преобразования осуществляются практически мгновенно.

При цифровом способе обработки информации каждой переменной величине в системе ставится в соответствие ее цифровой код. Функциональные зависимости в системе реализуются путем непосредственного решения уравнений системы теми или иными численными методами по заранее заложенной программе. Устройство, реализующее это решение называется процессором.

Отличительной особенностью цифровых систем управления является дискретизация сигнала по уровню, величина которой определяется разрядностью производимых вычислений. Так, в случае 8-разрядной системы, весь диапазон изменения значения сигнала делится на 256 участков и цифровой код, соответствующий этому сигналу может принимать лишь одно из 256 значений. Это, очевидно, накладывает ограничение на точность цифровой системы управления. Вследствие этого, долгое время в прецизионных системах продолжали (и в ряде случаев продолжают) использовать аналоговые методы обработки информации. Проведем сравнительный анализ. Пусть в аналоговой системе некоторый сигнал, в амплитуде которого заложена информация, может изменяться в пределах от 0 до 10 В. Уровень шума при этом не превышает 1 мВ. Для достоверной передачи информации, исключающей влияние шумов, минимальное приращение сигнала должно составлять как минимум 1 мВ.

Для передачи такого же количества информации в цифровом коде необходимо иметь разрядность как минимум 14 двоичных разрядов. Следовательно, цифровые системы с меньшей разрядностью будут уступать по точности описанной аналоговой системе. Однако, при наличии разрядности, большей чем 14 бит цифровая система может не только не уступать, но и превосходить по точности аналоговую поскольку ее параметры не изменяются с течением времени и не таких внешних факторов как температура, влажность и т.п., что в большой степени присуще практически всем аналоговым системам.

Т.о., в настоящее время, благодаря всему вышеперечисленному идет полномасштабное внедрение микропроцессорной техники практически во все сферы деятельности, где еще вчера господствовали аналоговые методы обработки информации.

В современной преобразовательной технике микроконтроллеры выполняют не только роль непосредственного управления полупроводниковым преобразователем за счет встроенных специализированных периферийных устройств, но и роль цифрового регулятора, системы защиты и диагностики, а также системы связи с технологической сетью высшего уровня.

В последнее время появился ряд микроконтроллеров, специализированных для задач управления полупроводниковыми преобразователями. Их вычислительное ядро, построенное, как правило, на базе т.н. “процессоров цифровой обработки сигналов”, адаптировано на выполнение рекуррентных полиномиальных алгоритмов цифрового регулирования. Встроенные периферийные устройства включают в себя многоканальные генераторы ШИМ-сигналов, аналого-цифровые преобразователи, блоки векторных преобразований координат, таймеры-счетчики, Watcdog-таймеры и т.д. Примерами таких устройств могут служить микроконтроллеры ADMC330 фирмы Analog Devices, TMS320C240 фирмы Texas Instruments, 56800 фирмы Motorola, векторный сопроцессор ADMC200 фирмы Analog Devices.

Первый процессор, как программно функционирующее устройство, способное выполнять арифметические и логические операции, а так же осуществлять ветвление алгоритма своего функционирования в зависимости от результата предыдущих вычислений, был создан в 40-е годы нашего столетия в США специалистами фирмы IBM. Он представлял собой устройство на электо-механических реле, занимал несколько этажей здания, имел крайне низкое быстродействие и надежность, и был пригоден лишь для очень узкого класса специфических вычислений. По мере прогресса электронной техники усовершенствовалась и элементная база для построения процессоров. Появлялись процессоры на электронных лампах, транзисторах, дискретных логических микросхемах малой степени интеграции. По мере совершенствования процессоры имели все меньшие габаритные размеры, потребляли все меньше энергии, обладали все большей производительностью и надежностью. Однако они все еще были мало пригодны для выполнения операций управления в реальном масштабе времени, а по тому использовались в основном только для определенного класса вычислительных задач.

Настоящая революция в вычислительной технике произошла после появления первого т.н. “микропроцессора”, т.е. процессора, выполненного в виде одной микросхемы большой степени интеграции. Это был 4-разрядный микропроцессор 4004 фирмы INTEL. В 1973 г. фирма INTEL выпускает 8-разрядный микропроцессор 8080, а в 1978 г. - 16-разрядный микропроцессор 8086, имеющий 29 тысяч транзисторов на кристалле и начальную стоимость 360$. Эволюция микропроцессоров имела все ускоряющиеся темпы и появившийся на рынке в 1993 г. микропроцессор INTEL PENTIUM имел уже 3.2. млн. транзисторов на кристалле и начальную стоимость 878$. Основными направлениями эволюции микропроцессоров являлись (и являются) увеличение разрядности одновременно производимых вычислений и уменьшение времени выполнения вычислений.

Микропроцессор-программно-управляемое устройство, предназначенное для обработки цифровой информации и управления процессом этой обработки, выполненное в виде одной (или нескольких) интегральной схемы с высокой степенью интеграции электронных элементов.

Уменьшение стоимости, потребляемой мощности и габаритных размеров, повышение надежности и производительности микропроцессоров способствовали значительному расширению сферы их использования. Наряду с традиционными вычислительными системами они все чаще стали использоваться в задачах управления. При этом перед микропроцессором ставились задачи программного управления различными периферийными объектами в реальном масштабе времени.

Управление обработкой информации

Информационные системы могут функционировать и с применением технических средств, и без такого применения. Это вопрос экономической целесообразности. В зависимости от степени автоматизации информационных процессов в системе управления организацией ИС классифицируют на ручные, автоматические и автоматизированные.

Ручные ИС характеризуются отсутствием современных технических средств переработки информации и выполнением всех операций человеком. Например, о деятельности менеджера в фирме, где отсутствуют компьютеры, можно говорить, что он работает с ручной ИС.

Автоматические ИС выполняют все операции по переработке информации без участия человека.

Автоматизированные ИС предполагают участие в процессе обработки информации и человека, и технических средств, причем главная роль отводится компьютеру. В современном термина "информационная система" вкладывается обязательно автоматизация системы. Автоматизированные ИС, учитывая их широкое использование в организации процессов управления, имеют различные модификации и могут быть классифицированы, например, по характеру использования информации и по сфере применения.

Рост объемов информации в информационной системе организаций, потребность в ускорении и более сложных способах ее переработки вызывают необходимость автоматизации работы информационной системы, то есть автоматизации обработки информации.

В неавтоматизированной информационной системе все действия с информацией и решения осуществляет человек. Автоматизация процессов обработки информации приводит к появлению в рамках алгоритмов обработки решающих правил, что может привести к перерастанию "чистой" информационной системы в информационную систему управления. В рамках последней частично реализованы и функции человека по принятию решений.

Автоматизированная информационная система управления организацией - взаимосвязанная совокупность данных, оборудования, программных средств, персонала, стандартов процедур, предназначенных для сбора, обработки, распределения, хранения, выдачи (предоставления) информации в соответствии с требованиями, вытекающими из целей организации. Как правило, это система для поддержки принятия решений и производства информационных продуктов, использующая компьютерную информационную технологию, а также персонал, который взаимодействует с компьютерами и телекоммуникациями. Технология работы в компьютеризированной информационной системе должна быть доступна для понимания специалистам. Система обеспечивает поддержку динамической информационной модели экономического объекта для удовлетворения информационных потребностей пользователей и для принятия управленческих решений.

Обычно, автоматизированные ИС включают автоматизированные рабочие места (АРМ) специалистов, средства коммуникации и обмена информацией. Все это позволяет эффективно автоматизировать работу. Эффективность применения ИС для управления экономическими объектами (предприятиями, банками, торговыми организациями, государственными учреждениями и т.д.) зависит от способности оперативно готовить управленческие решения, адаптироваться к изменениям внешней среды и информационных потребностей пользователей.

Информационная технология - это инфраструктура, обеспечивающая реализацию информационных процессов (сбора, обработки, накопления, хранения, поиска и распространения информации). IT предназначены для снижения трудоемкости процессов использования информационных ресурсов, повышение их надежности и оперативности. В состав IT входят аппаратные и программные средства, данные, телекоммуникации.

Функциональные подсистемы - это специализированные программы, предназначенные обеспечить обработку и анализ информации для подготовки данных и принятия решений в конкретной функциональной области на базе IT. В состав функциональных подсистем и приложений входят - производство, бухгалтерия, финансы, кадры, маркетинг, сбыт.

Управление ИС - это компонент, который обеспечивает оптимальное взаимодействие IT, функциональных подсистем и связанных с ними специалистов, развитие ИС в течение всего жизненного цикла. ИС осуществляет управление персоналом, пользователями, оперативное, финансовое, безопасностью, качеством, развитием ИС.

Каждая автоматизированная ИС ориентирована на выполненной определенных функций в соответствующей области применения.

Экономические информационные системы (ЭИС), связанные с предоставлением и обработкой информации для различных уровней управления экономическими объектами. Эта информация позволяет осуществлять функции учета, контроля, анализа, планирования и регулирования, с целью принятия эффективных управленческих решений. По уровням управления ЭИС делятся на государственные, региональные и муниципальные. По объектам управления ЭИС делятся на промышленные и непромышленные.

Системы поддержки принятия решений (СППР) - это аналитические ИС, обеспечивающие возможности изучения состояния, прогнозирования, развития и оценки возможных вариантов поведения на основе анализа данных, отражающих результаты деятельности объекта в течение определенного времени. СППР производят информацию, которая принимается человеком к сведению и на основании которой принимается решение.

СППР представляют собой системы, разработанные для поддержки процессов принять решений менеджерами в сложных слабоструктурированных ситуациях, связанных с разработкой и принятием решений. На развитие СППР существенное влияние оказали впечатляющие достижения в области информационных технологий, в частности телекоммуникационные сети, персональные компьютеры, динамические электронные таблицы, экспертные системы.

На уровне стратегического управления используется ряд СППР, в частности для долго-, средне- и краткосрочного, а также для финансового планирования, включая систему для распределения капиталовложений. Ориентированы на операционное управление СППР применяются в отраслях маркетинга (прогнозирование и анализ сбыта, исследования рынка и цен), научно-исследовательских и конструкторских работах, в управлении кадрами. Операционно-информационные применение связано с производством, приобретением и учетом товарно-материальных запасов, их физическим распределением и бухгалтерским учетом.

Исполнительные информационные системы (BIС) - это компьютеризированные системы, которые предназначены для обеспечения текущей и соответствующей информации топ менеджеров для поддержки исполнительных решений на базе использования сетевых рабочих станций. БИС является инструментальными средствами обеспечения подготовленных на носителях отчетов в постоянном формате или инструкций для исполнительных руководителей высшего уровня. Они предлагают качественную подготовку отчета и возможности для обучения. БИС относят к классу специализированных СППР, помогающие исполнителям анализировать важную информацию и использовать соответствующие инструментальные средства, чтобы направлять ее для создания стратегических решений в организации. Так, БИС помогают исполнителям разрабатывать более точное и актуальное целостное изображение операций организации, а также и конкурентов, поставщиков и потребителей (заказчиков).

Специализация БИС - мониторинг событий и трендов как внутренних, так и внешних. Обладая своевременной и более широкой информацией и соответствующими инструментальными средствами, менеджеры высшего уровня лучше готовятся к принятию стратегических изменений для использования возможностей организации и устранения проблем. БИС могут быть конкурентной оружием и инструментальным средством стратегического планирования; улучшать качество решений, создаваемых на высшем уровне; уменьшать объем времени на выявление проблем и; улучшать качество планирования на верхних уровнях управления организацией; обеспечивать механизм для улучшения контроля в организации и быстрее и лучший доступ к данным и моделей.

Поскольку БИС предназначены для верхнего уровня управления и для рассмотрения стратегических альтернатив, система должна быть более адаптированной к процессу управления, чем общие СППР. Кроме того, разработчики должны использовать творческий подход в развитии инициатив для поощрения использования системы высшим руководством. Проектирования БИС должен руководствоваться более тщательно, чем другие разработки СППР, учитывая тип решений и тип пользователя.

Информационно-поисковые системы производят ввод, систематизацию, хранение, выдачу информации по запросу пользователя без сложных преобразований данных.

Информационно-вычислительные системы осуществляют все операции переработки информации по определенному алгоритму. Среди них можно провести классификацию по степени влияния произведенной исходной информации на процесс принятия решений и выделить два класса: управляющие и те что советуют.

Управляющие ИС производят информацию, на основании которой человек принимает решение. Для этих систем характерны тип задач расчетного характера и обработка больших объемов данных.

ИС, советуют производят информацию, которая принимается человеком к сведению и не превращается немедленно в серию конкретных действий. Для них характерна обработка знаний, а не данных. Для этих систем характерны тип задач расчетного характера и обработка больших объемов данных.

Кроме всех перечисленных категорий ИС еще интегрированные информационные системы, предназначенные для автоматизации всех функций управления, по функционированию экономического объекта (от выполнения научных исследований, проектирования, изготовления, выпуска и сбыта к анализу эксплуатации системы).

Автоматизированная обработка информации

Автоматизированная обработка информации позволяет оперативно получать в режиме запроса (в реальном времени) различного рода справки, сводные ведомости, личностные и профессиональные характеристики, сведения о служебных перемещениях и многое другое, что позволит поднять на более высокую ступень всю работу с кадрами руководителей.

Автоматизированная обработка информации по учету основных средств создает предпосылки для отказа от ручного ведения картотеки, освобождения работников бухгалтерии от выполнения ручных операций по учету поступления и выбытия основных средств, расчета амортизационных отчислений, составления вручную бухгалтерских записей и отчетных форм.

Автоматизированная обработка информации по сводному синтетическому учету предполагает в качестве обязательного условия перевод на автоматизированную обработку всех участков бухгалтерского учета. Обработка информации на данном участке имеет свои особенности. Автоматизированная обработка информации предъявляет повышенные требования к качеству работы канала связи, которое определяется скоростью передачи информации и ее достоверностью. Особенностью автоматизированной обработки информации по учету производственных запасов является необходимость оперативной обработки многих документов.

Для автоматизированной обработки информации о надежности данные с первичных форм учета переносятся на специальные карты учета неисправностей, разработанные с учетом автоматизированной обработки.

Для автоматизированной обработки информации графические текстовые сокращения приемлемы, хотя в устную речь они могут и не войти.

Технологический процесс автоматизированной обработки информации включает этапы заполнения первичных документов, перенесения с них данных на машинные носители, обработки информации на ЭВМ. В процессе такой обработки в информацию вносятся ошибки как вследствие недостаточной надежности технических средств, так и по вине человека-оператора. Цель системы автоматизированной обработки информации состоит в обобщении и преобразовании исходной информации для получения сведений, которые в данный момент необходимы для принятия решения.

Для обеспечения автоматизированной обработки информации используют первичные или вторичные преобразователи, обеспечивающие выходной сигнал по напряжению. К ним относятся индуктивные, трансформаторные, вихретоковые, механотронные, пневмоме-хонотронный, растровые, фотоэлектрические и некоторые другие типы преобразователей.

При проектировании автоматизированной обработки информации важное значение имеет изучение ее элементов в трех основных аспектах: прагматическом, семантическом и синтактическом.

Эффективное функционирование системы автоматизированной обработки информации (САОИ) по безопасности жизнедеятельности в современных условиях практически невозможно без соответсву-ющего математического обеспечения. Под математическим обеспечением САОИ понимается выбор математических методов, адекватных для обработки социологических, социально-экономических, инженерно-технических, санитарно-гигиенических и других данных (показателей условий труда на рабочих местах, состояния охраны труда, работоспособности, профессиональной заболеваемости и производственного травматизма, оценки их влияния на эффективность производства, производительность труда и т.п.) и соответствующих программ, реализующих указанные методы.

Возрастание понимания важности автоматизированной обработки информации и рост информационных потоков непрерывно стимулирует поиск принципиально новых методов и средств хранения информации.

Ниже показана технология автоматизированной обработки информации по учету труда и его оплаты на примере данного программного комплекса.

Все перечисленные системы принципиально новой автоматизированной обработки информации представляют не что иное, как декомпозицию средств принятия решений по фазам жизненного цикла системы: предпроектные научно-исследовательские работы, проектирование, создание и функционирование. Фазы разграничивают процесс жизни системы во времени, что позволяет разрабатывать системы для различных временных фаз процесса. Принцип системного подхода не позволяет изолированно рассматривать отдельные временные фазы. Последствия от принятия масштабного решения на любой временной фазе обязательно скажутся не только на протяжении данной фазы, но и на всех последующих. Например, грубый просчет на стадии проектирования разработки месторождения обычно трудно или вообще невозможно исправить на последующих стадиях.

Предприятия, осуществляющие автоматизированную обработку информации, имеют большое количество персонала, ведущего сбор и проверку данных, составление и ведение различного рода классификаторов и шифраторов. Достаточно сказать, что на заводах, добившихся определенных успехов во внедрении АСУП, такие подразделения достигают по численности 50 и более человек. Создание автоматизированных систем управления и обработки информации. Индустриальный подход к автоматизированной обработке информации определяет и вид цены на нее - оптовая. Это касается в первую очередь отчетной информации, индивидуальные затраты на сбор и обработку которой близки к общественно необходимым затратам. К аналитической информации, потребительские свойства которой увеличиваются и процесс формирования которой носит индивидуальный характер, что отражается в более высоких затратах, применим договорный подход в ценообразовании. В уровне цены отражается и временной аспект предоставления информации, поскольку ее обработка в пакетном режиме более длительная, но дешевле, чем в диалоговом режиме.

Если в организации применяется автоматизированная обработка информации, то напротив каждой строки в специально отведенном поле могут быть проставлены соответствующие коды. Система кодирования должна быть разработана самой организацией или предусмотрена в используемом ею программном обеспечении.

Разработка и внедрение системы автоматизированной обработки информации осуществляются в очередности, установленной техническим заданием. Содержание первой очереди системы определяется составом задач учета, анализа, планирования и оперативного управления, наиболее поддающихся автоматизации и имеющих существенное значение для принятия управленческих решений в предприятии. В процессе разработки последующих очередей системы происходят наращивание исходного комплекса функциональных задач, расширение и интеграция информационного и математического обеспечения, модернизация комплекса технических средств. При создании первой очереди ЭИС техническое задание разрабатывается на всю систему, а технический и рабочий проекты - на задачи и подсистемы, входящие в состав первой очереди системы.

Глава посвящена рассмотрению принципов автоматизированной обработки информации, которую несет в себе топологическая структура связи ФХС. Смысловая емкость, информационная насыщенность и структурная организация диаграмм связи обеспечивают возможность построения эффективных формальных процедур (с реализацией их на ЦВМ) для преобразования диаграммы связи в другие эквивалентные формы математического описания системы. В главе будут рассмотрены автоматизированные процедуры распределения на диаграмме связи операционных причинно-следственных отношений, вывода в нормальной форме уравнений состояния ФХС, построения моделирующих алгоритмов ФХС, сигнальных графов сложных объектов и передаточных функций для отражения динамического поведения линейных систем.

Качественный скачок в развитии автоматизированной обработки информации знаменует появление сетей ЭВМ - множества больших и малых электронных вычислительных машин, соединенных каналами связи. Подключение к сети ЭВМ большого числа абонентских пунктов обеспечивает коллективный доступ пользователей к самой разнообразной информации, сосредоточенной в памяти любой из ЭВМ, включенной в сеть.

Применение кодов удобно при автоматизированной обработке информации. Если бухгалтерский учет ведется вручную, применение кодов, как правило, не требуется.

Численность работников, занятых автоматизированной обработкой информации, определяется по специальной методике.

Если в информационной системе осуществляется автоматизированная обработка информации, то техническое обеспечение включает в себя электронную вычислительную технику и средства связи ее между собой. Основной частью технического обеспечения в этом случае является ЭВМ. В крупных современных фирмах применяется комплексная автоматизированная обработка информации, которая объединяет все технические средства обработки информации с использованием новейшей технологии и методологии обработки информации. Создание комплексных автоматизированных систем осуществляется в несколько этапов.

Основным профилем деятельности предприятий ИВО является автоматизированная обработка информации с помощью ЭВМ, а также работы по созданию информационной, программной, технической и технологической среды для эффективной обработки информации и оформления результатов.

Процедура, в которой используются средства автоматизированной обработки информации. Если в организации уже есть служба автоматизированной обработки информации, то часто именно ее сотрудникам поручается разработка задачи. Тогда с этой целью создается коллектив разработчиков. Должен быть назначен руководитель проекта. Если можно, члены этого коллектива должны быть отобраны из числа специалистов, участвовавших в обосновании целесообразности автоматизации. Так же как и в том случае, когда прибегают к помощи обслуживающей фирмы, желательно назначить одного или нескольких консультантов по вопросам автоматизации управления. Учитывая то, что между пользователями - подразделениями организации, имеющими отношение к разрабатываемой задаче, и коллективом разработчиков часто складываются напряженные отношения, отбор разработчиков должен производить руководитель службы автоматизированной обработки информации, но с согласия руководства организации и руководителей ее заинтересованных подразделений.

Вычислительный центр осуществляет разработку и внедрение программ автоматизированной обработки страховой информации в практику работы страховщика. Взаимодействует со всеми структурными подразделениями страховщика. Формирует электронные базы данных по страховым случаям, категориям страхователей и другим группировкам. Создает замкнутую в рамках центрального офиса и филиалов страховой компании электронную сеть, подключенную к центральному компьютеру. Работает над созданием других локальных компьютерных сетей. Как выполняется расчет годовых эксплуатационных затрат на автоматизированную обработку информации с помощью АСУП.

В условиях работы информационно-вычислительного центра на самостоятельном балансе автоматизированная обработка информации выполняется в порядке хозрасчетных услуг и определяется на основе стоимости машино-часа ЭВМ и времени на проведение расчетов. Семиотические проблемы автоматизированной обработки информации - опубликованы материалы, посвященные: разработке проблем связи между синтаксическими и семантическими свойствами языковых систем; исследованию естественных и формализованных языков науки и техники в связи с задачами хранения и поиска информации; вопросам автоматической обработке текстов с целью создания практически действующих систем машинного индексирования, реферирования и перевода текстов; исследованиям в области создания специальных языков программирования и трансляторов с них для машинной обработки текстов.

Рассматриваются современные средства вычислительной техники, используемые для автоматизированной обработки информации при разработке нефтяных месторождений. Эффективность применения рассмотренных методов обработки геолого-промысловой информации показана на опыте разработки многих месторождений Урало-Поволжья и Западной Сибири.

В последние годы машинная графика широко используется при автоматизированной обработке информации на ЭВМ. По вопросам машинной графики опубликованы сотни научных работ, систематически проводятся конференции, международные конгрессы и выставки.

В условиях обработки учетной информации на ЭВМ при автоматизированной обработке информации счетный метод контроля в связи с его большой трудоемкостью применяется, как правило, только для проверки правильности переноса на машинные носители с первичных: документов количественно-суммовых показателей. Остальные показатели проверяются на ЭВМ программными методами контроля, которые могут обеспечить логическую проверку реквизитов документов. Логическая проверка позволяет во многих случаях выявлять и ошибки, допущенные лицом, заполняющим первичный документ. Применяются и другие методы контроля переноса данных первичных документов на машинные носители, обеспечивающие большую его эффективность.

К третьей группе выходных машинограмм, получаемых в процессе автоматизированной обработки информации по учету труда и заработной платы, относятся различного рода справочные ведомости, являющиеся регистрами аналитического учета и детализирующие суммы произведенных начислений и удержаний. Информация справочных ведомостей не требует дополнительной обработки, она содержится в соответствующих файлах и является органической частью данных о начисленной заработной плате, а также различных видов оплат и произведенных удержаний. Рассмотрим содержание некоторых справочных ведомостей.

При решении принятых в эксплуатацию задач подсистемы используются методы автоматизированной обработки информации и прямых плановых расчетов с применением математических методов и средств вычислительной техники для определения потребности в отдельных видах материально-технических ресурсов по основным направлениям их использования в разрезе отраслей и фондодержателей, составления натурально-стоимостных балансов продукции машиностроения, формирования и проверки планов распределения материально-технических ресурсов и составления выписок из них по фондодержателям. Работники системы управления должны быть ознакомлены с основными понятиями автоматизированной обработки информации, оснащены инструкциями по подготовке информации к машинной обработке и использованию результатной информации в своей деятельности. В качестве примера, иллюстрирующего возможности и принципы организации автоматизированной обработки информации о надежности оборудования СЭ, ниже рассматривается АСНИ Надежность, функционирующая в тяжелом электромашиностроении и служащая для формирования информации о надежности электрических генераторов. В условиях использования услуг кустового ВЦ расчет затрат на автоматизированную обработку информации производится на основе показателя стоимости одного машино-часа работы ЭВМ. При использовании услуг кустового вычислительного центра расчет затрат на автоматизированную обработку информации производится на основе стоимости одного машино-часа работы ЭВМ.

Справочник может быть полезен широкому кругу специалистов, разрабатывающих системы автоматизированной обработки информации, проектирования, автоматизации научно-технических экспериментов, управления производством, а также студентам и аспирантам. Очевидно, под информатикой здесь подразумевается лишь отдельная ее отрасль - автоматизированная обработка информации.

В результате (и независимо от того, использовалась уже в организации автоматизированная обработка информации или нет) руководству приходится вырабатывать политику в отношении автоматизированной обработки информации, которая находит выражение в плане автоматизации управления. Последний должен быть сформулирован исходя из конкретных трудностей, с которыми сталкивается управленческий аппарат при выполнении своих обязанностей с помощью ручных процедур, но также и с учетом общей политики совершенствования управления организацией.

С точки зрения полноты охвата операций, сложности переработки и использования результатов автоматизированной обработки информации автоматизированные системы управления подразделяются на информационные (или информационно-справочные), информационно-советующие и управляющие.

Концепция баз данных уже давно стала определяющим фактором при создании эффективных систем автоматизированной обработки информации. Однако только в последние годы специалисты пришли к заключению, что важнейшим компонентом данной концепции должна быть единая методология проектирования баз данных. Это объясняется не только тем, что проектирование новых баз данных представляет собой длительный и трудоемкий процесс, требующий привлечения специалистов высокой квалификации, но и тем, что, будучи информационной моделью части непрерывно меняющегося реального мира, базы данных также должны меняться, чтобы адекватно отражать действительность. Поэтому для сопровождения и эксплуатации информационных систем требуется постоянное использование процедур проектирования баз данных. Естественно, что использование систем автоматизации проектирования баз данных должно привести к уменьшению стоимости и времени разработки информационных систем, сокращению доли рутинных и нетворческих работ (связанных со сбором и редактированием исходных данных) и затрат на разработку прикладных систем. К настоящему времени в нефтяной промышленности созданы большие мощности, предназначенные для эффективной автоматизированной обработки информации по управлению и призванные совместно с традиционной системой управления обеспечить значительный рост эффективности всех видов производств в добыче нефти.

Предлагаемый состав реквизитов регистрационной карточки заявки позволяет рационально построить поисковые процедуры при автоматизированной обработке информации.

Ускоренными темпами развивать производство и повышать качество бумаги для печати, для средств автоматизированной обработки информации, бумаги и картона для упаковки и расфасовки пищевых продуктов и промышленных товаров. Шире использовать макулатуру в производстве бумаги и картона.

Методы обработки информации

Одним из главных предназначений ИТ является сбор, обработка и предоставление информации для принятия менеджерами управленческих решений.

В связи с этим методы обработки экономической информации удобно рассматривать по фазам жизненного цикла процесса принятия управленческого решения:

1) диагностика проблем,
2) выявление (генерирование) альтернатив,
3) выбор решения,
4) реализация решения.

Методы, используемые на фазе диагностики проблем, обеспечивают ее достоверное и наиболее полное описание. В их составе выделяют методы сравнения, факторного анализа, моделирования (экономико-математические методы, методы теории массового обслуживания, теории запасов, экономического анализа) и прогнозирования (качественные и количественные методы). Все эти методы осуществляют сбор, хранение, обработку и анализ информации, фиксацию важнейших событий. Набор методов зависит от характера и содержания проблемы, сроков и средств, которые выделяются на этапе постановки.

На фазе разработки (генерирования) альтернатив также используются методы сбора информации, но в отличие от первого этапа, на котором осуществляется поиск ответов на вопросы типа "Что произошло?" и "По каким причинам?", здесь уясняют, как можно решить проблему, с помощью каких управленческих действий.

При разработке альтернатив (способов управленческих действий по достижению поставленной цели) используют методы как индивидуального, так и коллективного решения проблем. Индивидуальные методы характеризуются наименьшими затратами времени, но не всегда эти решения являются оптимальными. При генерировании альтернатив используют интуитивный подход или методы логического (рационального) решения проблем. Для помощи лицу, принимающему решения (ЛПР), привлекаются эксперты по решению проблем, которые участвуют в разработке вариантов альтернатив. Коллективное решение проблем осуществляется по модели мозговой атаки/штурма, Дельфи и номинальной групповой техники.

При мозговой атаке имеют дело с неограниченной дискуссией, которая проводится преимущественно в группах, состоящих из 4–10 участников. Возможна также мозговая атака в одиночестве.

Чем больше разница между участниками, тем плодотворнее результат (ввиду разного опыта, темперамента, рабочих сфер).

Участникам не требуется глубокой и длительной подготовки и наличия опыта по этому методу. Однако качество выдвигаемых идей и потраченное время покажут, насколько отдельные участники или целевые группы знакомы с принципами и основными правилами этого метода. Положительным является наличие у участников знаний и опыта в рассматриваемой сфере. Длительность заседания в рамках мозговой атаки можно выбрать в пределах от нескольких минут до нескольких часов, общепринятой является продолжительность в 20–30 мин.

При использовании метода мозговой атаки в небольших группах следует строго придерживаться двух принципов: воздержаться от оценки идей (тут количество превращается в качество) и соблюсти четыре основных правила – критика исключается, приветствуется свободное ассоциирование, количество является желательным, ведется поиск сочетаний и улучшений.

Выбор решения происходит в условиях определенности, риска и неопределенности. Отличие между этими состояниями среды определяется различной информацией, степенью знаний ЛПР сущности явлений, условий принятия решений.

Условия определенности представляют собой такие условия принятия решений (состояние знаний о сущности явлений), когда ЛПР заранее может определить результат (исход) каждой альтернативы, предлагаемой для выбора. Такая ситуация характерна для тактических краткосрочных решений. В этом случае ЛПР располагает подробной информацией, т.е. исчерпывающими знаниями о ситуации для принятия решения.

Условия риска определяются таким состоянием знания о сущности явления, когда ЛПР известны вероятности возможных последствий реализации каждой альтернативы. Условия риска и неопределенности характеризуются так называемыми условиями многозначных ожиданий будущей ситуации во внешней среде. В этом случае ЛПР должно сделать выбор альтернативы, не имея точного представления о факторах внешней среды и их влиянии на результат. В этих условиях исход, результат каждой альтернативы представляет собой функцию условий – факторов внешней среды (функцию полезности), который не всегда способен предвидеть ЛПР. Для предоставления и анализа результатов выбранных альтернативных стратегий используют матрицу решений, называемую также платежной.

Условия неопределенности представляют собой такое состояние окружающей среды (знания о сущности явлений), когда каждая альтернатива может иметь несколько результатов, и вероятность возникновения этих исходов неизвестна. Неопределенность среды принятия решения зависит от соотношения между количеством информации и ее достоверностью. Чем неопределеннее внешнее окружение, тем труднее принимать эффективные решения. Среда принятия решения зависит также от степени динамики, подвижности среды, т.е. скорости происходящих изменений условий принятия решения. Изменение условий может происходить как вследствие развития организации, т.е. приобретения ею возможности решать новые проблемы, способности к обновлению, так и под влиянием внешних по отношению к организации факторов, которые не могут регулироваться организацией. Выбор наилучшего решения в условиях неопределенности существенно зависит от того, какова степень этой неопределенности, т.е. от того, какой информацией располагает ЛПР. Такой выбор, когда вероятности возможных вариантов условий неизвестны, но существуют принципы подхода к оценке результатов действий, обеспечивает использование четырех критериев: максиминный критерий Вальда, минимаксный критерий Сэвиджа, критерий пессимизма-оптимизма Гурвица, критерий Лапласа или Байесов критерий.

При реализации решений применяют методы планирования, организации и контроля выполнения решений. Составление плана реализации решения предполагает получение ответа на вопросы, что, кому и с кем, как, где и когда делать. Ответы на эти вопросы должны быть документально оформлены.

Основными методами, применяемыми при составлении плана реализации управленческих решений, являются сетевое моделирование и разделение обязанностей. Основными инструментами сетевого моделирования выступают сетевые матрицы, где сетевой график совмещен с календарно-масштабной сеткой времени.

К методам организации выполнения решения относят методы составления информационной таблицы реализации решений (ИТРР) и методы воздействия и мотивации.

Методы контроля выполнения решений подразделяются на контроль по промежуточным и конечным результатам и контроль по срокам выполнения (операции в ИТРР). Основное назначение контроля заключается в создании системы гарантий выполнения решений, системы обеспечения максимально возможного качества решения.

Технологии обработки информации

В ходе информационного процесса информация, циркулирующая на предприятии или в организации, подвергается той или иной обработке в зависимости от рода их деятельности. По месту возникновения выделяют входящую и выходящую, внутреннюю и внешнюю информацию. В процессе обработки информация может быть первичной и вторичной, промежуточной и результатной, при этом обрабатываемые данные преобразуются из одного вида в другой. По мере развития информационного общества трудозатраты на обработку данных возрастают и требуют совершенствования применяемых технологий.

Технология (гр. techne – мастерство, logos – учение, учение о мастерстве) – совокупность знаний о способах и средствах производственных процессов, при которых происходит необходимое качественное изменение обрабатываемых объектов.

Информационная технология – процесс, использующий совокупность средств и методов сбора, обработки и передачи данных для получения информации нового качества о состоянии объекта, процесса или явления. Сходное определение дается в ст. 2 Федерального закона № 149-ФЗ "Об информации, информационных технологиях и о защите информации": информационные технологии – процессы, методы поиска, сбора, хранения, обработки, предоставления, распространения информации и способы осуществления таких процессов и методов.

Цель информационной технологии – производство информации для ее анализа человеком и последующего принятия решений по осуществлению каких-либо действий. В более узком понимании информационная технология представляет собой совокупность четко определенных целенаправленных действий человека по переработке информации на компьютере. Технологический процесс переработки информации состоит из этапов, операций и конкретных действий оператора, выполняющего обработку данных.

В структуре возможных операций с данными можно выделить следующие:

Сбор данных и их формализация, т.е. приведение к одинаковой форме;
фильтрация и сортировка;
обработка и преобразование данных в соответствии с поставленной задачей;
архивация данных, т.е. организация хранения данных в компактной, удобной и легкодоступной форме;
защита данных – комплекс мер, направленных на предотвращение утраты данных и их модификации;
транспортировка данных, т.е. прием и передача данных между удаленными участниками информационного процесса.

История развития информационных технологий включает несколько этапов, связанных с кардинальными изменениями в сфере обработки информации.

Первый этап связан с изобретением письменности. Средствами сбора, хранения и обработки информации здесь служили перо, чернила, бумага и книги, эффективность информационной обработки на этом этапе была крайне низкой. Изобретение книгопечатания в середине XVI в. значительно повысило эффективность обработки информации, возникли такие средства, как наборная доска и печатный станок.

На смену "ручной технологии" в конце XIX в., с появлением телеграфа, телефона, радио, пришла "механическая" технология, позволяющая оперативно передавать информацию.

Создание электрических пишущих машинок, телевидения, копировальных аппаратов, магнитофонов к середине XX в. привело к возникновению "электрических" информационных технологий.

Со второй половины XX в. и с появлением ЭВМ, а затем персонального компьютера начался новый этап в развитии информационных технологий – "электронные" технологии.

Электронная вычислительная машина – универсальное устройство ввода, вывода, накопления, обработки и передачи информации для решения вычислительных и информационных задач. Термин "компьютер" употребляется в том же смысле, что и термин "ЭВМ". ЭВМ – электронная машина, так как состоит из электронных схем, и вычислительная машина, так как обрабатывает информацию в цифровой форме, выполняя вычисления, численные арифметические и логические операции без вмешательства человека. Цифровая форма представления любых данных обеспечивает компьютеру такие свойства, как универсальность, пригодность для решения разнообразных задач.

Впервые проект аналитической машины (вычислительного автомата) в составе устройства ввода, устройства памяти, процессора, устройства вывода был предложен в XIX в. Чарльзом Бэбиджем. Он же впервые выдвинул идею программного управления такой машиной. Дальнейшее развитие этой идеи нашло свое продолжение при построении первых электронно-вычислительных машин. Функционирование ЭВМ базировалось на двоичной системе счисления для представления чисел и размещения программы управления в запоминающем устройстве. Первые ЭВМ разрабатывались в США и Англии, в континентальной Европе первая "малая электронная счетная машина" (МЭСМ) была создана в СССР.

Электронно-вычислительные машины принято классифицировать по ряду признаков.

По физическому представлению обрабатываемой информации выделяют:

Аналоговые вычислительные машины непрерывного действия, которые работают с информацией, представленной в непрерывной (аналоговой) форме, т.е. в виде непрерывного ряда значений какой-либо физической величины (чаще всего электрического напряжения);
цифровые вычислительные машины, которые работают с информацией в дискретной форме (цифровой);
гибридные вычислительные машины комбинированного действия, совмещающие в себе достоинства аналоговых и цифровых вычислительных машин и использующиеся для решения задач управления сложными быстродействующими техническими комплексами.

По этапам создания ЭВМ выделяют несколько поколений развития компьютерной техники, которые формировались в течение XX в.

К первому поколению относят машины, созданные в 1950-е гг. на основе электронных ламп. В это время были разработаны отечественные машины: МЭСМ (малая электронная счетная машина), БЭСМ (большая электронно-счетная машина), "Стрела", серия "Урал", М-20. Основным применением первых ЭВМ было выполнение научно-технических расчетов.

Спустя десятилетие появились ЭВМ, созданные на дискретных полупроводниковых приборах (транзисторах). Второе поколение ЭВМ применялось для технических и экономических расчетов.

Машины третьего поколения появились в 1970-е гг. и были разработаны на полупроводниковых интегральных схемах с малой и средней степенью интеграции (сотни, тысячи транзисторов в одном корпусе). Это поколение ЭВМ начало применяться в управлении и проведении экономических расчетов.

Четвертое поколение ЭВМ сформировалось в 1980-е гг. на базе больших и сверхбольших интегральных схем – микропроцессоров (десятки тысяч – миллионы транзисторов в одном кристалле). Целью ЭВМ этого поколения уже было представление информации и более широкое использование в управлении.

Так, характеризуются созданием ЭВМ со многими десятками параллельно работающих микропроцессоров, позволяющих строить эффективные системы обработки знаний. Для этого поколения характерны применение персональных компьютеров, телекоммуникационная обработка данных, компьютерные сети, широкое применение систем управления базами данных, элементы интеллектуального поведения систем обработки данных и устройств.

Создание оптоэлектронных ЭВМ с массовым параллелизмом и нейронной структурой относится к началу XXI в. Предполагается, что в компьютерах следующего поколения произойдет качественный переход от обработки данных к обработке знаний.

Процесс обработки информации

Обработка информации - это упорядоченный процесс ее преобразования в соответствии с алгоритмом решения задачи.

После решения задачи обработки информации результат должен быть выдан конечным пользователям в требуемом виде. Эта операция реализуется в ходе решения задачи выдачи информации. Выдача информации, как правило, производится с помощью внешних устройств ЭВМ в виде текстов, таблиц, графиков и пр.

Информационная техника представляет собой материальную основу информационной технологии, с помощью которой осуществляется сбор, хранение, передача и обработка информации. До середины XIX века, когда доминирующими были процессы сбора и накопления информации, основу информационной техники составляли перо, чернильница и бумага. Коммуникация (связь) осуществлялась путем направления пакетов (депеш). На смену "ручной" информационной технике в конце XIX века пришла "механическая" (пишущая машинка, телефон, телеграф и др.), что послужило базой для принципиальных изменений в технологии обработки информации. Понадобилось еще много лет, чтобы перейти от запоминания и передачи информации к ее переработке. Это стало возможно с появлением во второй половине нашего столетия такой информационной техники, как электронные вычислительные машины, положившие начало "компьютерной технологии".

Древние греки считали, что технология (techne - мастерство + logos - учение) - это мастерство (искусство) делать вещи. Более емкое определение это понятие приобрело в процессе индустриализации общества.

Технология - это совокупность знаний о способах и средствах проведения производственных процессов, при которых происходит качественное изменение обрабатываемых объектов.

Технологиям управляемых процессов свойственны упорядоченность и организованность, которые противопоставляются стихийным процессам. Исторически термин "технология" возник в сфере материального производства. Информационную технологию в данном контексте можно считать технологией использования программно-аппаратных средств вычислительной техники в данной предметной области.

Информационная технология - это совокупность методов, производственных процессов и программно-технических средств, объединенных в технологическую цепочку, обеспечивающую сбор, обработку, хранение, распространение и отображение информации с целью снижения трудоемкости процессов использования информационного ресурса, а также повышения их надежности и оперативности.

Информационные технологии характеризуются следующими основными свойствами:

1. Предметом (объектом) обработки (процесса) являются данные;
2. Целью процесса является получение информации;
3. Средствами осуществления процесса являются программные, аппаратные и программно-аппаратные вычислительные комплексы;
4. Процессы обработки данных разделяются на операции в соответствии с данной предметной областью;
5. Выбор управляющих воздействий на процессы должен осуществляться лицами, принимающими решение;
6. Критериями оптимизации процесса являются своевременность доставки информации пользователю, ее надежность, достоверность, полнота.

Из всех видов технологий информационная технология сферы управления предъявляет самые высокие требования к "человеческому фактору", оказывая принципиальное влияние на квалификацию работника, содержание его труда, физическую и умственную нагрузку, профессиональные перспективы и уровень социальных отношений.

Анализ обработки информации

Полученную первичную социологическую информацию следует обобщить, проанализировать, научно интегрировать. Для этого все собранные анкеты, опросы, карточки наблюдения или бланки интервью необходимо проверить, закодировать, ввести в программу, сгруппировать полученные данные, составить таблицы, графики, диаграммы и т. д. Иными словами, необходимо применить методы анализа и обработки эмпирических данных.

Первичные методы обработки информации - это в первую очередь данные, которые получили в ходе эмпирического исследования.

Вторичные методы - это методы, которые получили показатели, которые рассчитывают по частотам и сгруппированным данным.

Шесть этапов социологической информации:

Этап 1. Кодирование и редактирование информации. Состоит в основном в формализации эмпирических данных, полученных путем опроса или иного метода сбора социологической информации. Часть анкетной информации уже заранее формализована, то есть, даны все возможные варианты ответов и проставлены соответствующие цифровые коды. Но зачастую в этих ответах встречаются ошибки, которые нужно устранить при редактировании уже собранных анкет. Кроме того, другой тип собираемых данных представляет собой ответы на открытые вопросы. Поэтому их группировка и последующее кодирование также являются важной задачей первого этапа.
Этап 2. Перенос социологических данных на магнитные носители. Объем информации, собираемой в ходе социологического исследования зачастую достаточно велик: среднее по объему исследование дает не менее нескольких тысяч единиц информации. Обработка такого количества данных без применения современных компьютеров очень трудна и малоэффективна. Применение средств вычислительной техники требует, чтобы обрабатываемая информация находилась на специальных для этого созданных носителях. Поэтому перенос данных с анкет на такие носители информации и составляет содержание второго этапа обработки социологической информации.
Этап 3. Ввод информации непосредственно в компьютер. Находящиеся на специальных носителях данные нужного нам исследования вводятся в компьютер и выстраиваются в нем в соответствии с требованиями ранее разработанной и используемой особой программы обработки данных. Данный этап реализуется чаще всего специалистами вычислительного центра или обученными программистами.
Этап 4. Проверка качеств социологических данных и исправление неточностей. Введенная в компьютер информация во многих случаях содержит более или менее серьезные ошибки. Причины возникновения таких ошибок довольно разнообразны - это ошибки респондентов при заполнении анкет и ошибки перенесения кодов на машиночитаемые носители информации, а помимо этого сбои технических устройств компьютеров. Однако неважно то, откуда пошла ошибка. Сразу необходимо выявить и исправить их после ввода данных в компьютер, т. е. до начала процесса перехода к следующему этапу анализа социологической информации. Для этого социолог-исследователь формулирует определенные требования, которым должны удовлетворять полученные в ходе исследования данные. На основании полученной информации о тех или иных ошибках социолог-исследователь принимает решение об их устранении, корректируя, таким образом, полученную информацию.
Этап 5. Создание переменных. Собранная с помощью анкет информация зачастую прямо не отвечает на вопросы, которые необходимо решать в ходе данного исследования. Чаще всего связано это с тем, что часто бывает очень сложно сделать нужные замеры какой либо изучаемой характеристики. Для ее получения скорее всего может потребоваться выполнение ряда преобразований собранных данных. Для многих вопросов анкет получаемая информация непосредственно отвечает задачам исследования, и в этом смысле сами вопросы являются переменными.
Этап 6. Заключительный. Статистический анализ социологической информации. По значимости этот этап является самым главным во всем анализе социологических данных. В ходе статистического анализа выявляют нужные статистические закономерности и зависимости. Социологи используют широкий диапазон различных методов математической статистики легко и достаточно полно и всесторонне проанализировать всю добытую социологическую информацию. При этом применение современной вычислительной техники, оснащенной соответствующими программами математико-статистической обработки информации, - необходимое условие оперативного и качественного анализа социологических данных.

Социологические данные подразделяют на правильные, точные, устойчивые, обоснованные или репрезентативные. Классификация ошибок имеет большое значение для определения надежности социологической информации. В социологии все ошибки принято подразделять на следующие две группы: инструментальные и теоретические.

Инструментальные ошибки это различия измеренного и истинного значений признака. Они подразделяются на случайные и систематические. Случайными это ошибки, которые при повторных измерениях изменяются по вероятностным законам. Систематические ошибки при повторных измерениях остаются постоянными.

С помощью методов повышения надежности социологической информации можно учитывать ошибки или контролировать надежность эмпирических данных. Существуют методы внешнего и внутреннего контроля. Внешние связаны в основном с сопоставлением эмпирической информации в данном исследовании с какой-либо другой внешней информацией. Внутренние связанны непосредственно с изучением распределения признаков в исследовании.

Подводя итог, можно сделать вывод, что методы повышения надежности социологической информации дают возможность установить степень надежности результатов исследования, которые получили при повторном применении по той же методике и технике в таких же условиях.

Обработка текстовых информаций

Несмотря на широкие возможности использования компьютеров для обработки самой разной информации, самыми популярными по-прежнему остаются программы, предназначенные для работы с текстом.

При подготовке текстовых документов на компьютере используются три основные группы операций:

Операции ввода позволяют перенести исходный текст из его внешней формы в электронный вид, то есть в файл, хранящийся на компьютере. Ввод может осуществляться не только набором с помощью клавиатуры, но и путем сканирования бумажного оригинала и последующего перевода документа из графического формата в текстовый (распознавание).
- Операции редактирования (правки) позволяют изменить уже существующий электронный документ путем добавления или удаления его фрагментов, перестановки частей документа, слияния нескольких файлов, разбиения единого документа на несколько более мелких и т.д. Ввод и редактирование при работе над текстом часто выполняются параллельно. При вводе и редактировании формируется содержание текстового документа.
- Оформление документа задают операциями форматирования. Команды форматирования позволяют точно определить, как будет выглядеть текст на экране монитора или на бумаге после печати на принтере.

Программы, предназначенные для обработки текстовой информации, называют текстовыми редакторами.

Все многообразие современных текстовых редакторов условно можно разбить на три основные группы:

1. К первой относятся простейшие текстовые редакторы, обладающие минимумом возможностей и способные работать с документами в обычном текстовом формате.txt, который, как известно, при всей своей простоте и всеобщей поддержке совершенно не позволяет более или менее прилично форматировать текст. К этой группе редакторов можно отнести как входящие в комплект поставки ОС семейства Windows редакторы WordPad и совсем малофункциональный NotePad (Блокнот), и множество аналогичных продуктов других производителей (Atlantis, EditPad, Aditor Pro, Gedit и т.д.).
2. Промежуточный класс текстовых редакторов включает в себя достаточно широкие возможности по части оформления документов. Они работают со всеми стандартными текстовыми файлами(TXT, RTF, DOC). К таким программам можно отнести Microsoft Works, Лексикон.
3. К третьей группе относятся мощные текстовые процессоры, такие, как Microsoft Word или StarOffice Writer. Они выполняют практически все операции с текстом. Большинство пользователей использует именно эти редакторы в повседневной работе.

Основными функциями текстовых редакторов и процессоров являются:

Ввод и редактирование символов текста;
- возможность использования различных шрифтов символов;
- копирование и перенос части текста с одного места на другое или из одного документа в другой;
- контекстный поиск и замена частей текста;
- задание произвольных параметров абзацев и шрифтов;
- автоматический перенос слов на новую строку;
- автоматическую нумерацию страниц;
- обработка и нумерация сносок;
- создание таблиц и построение диаграмм;
- проверка правописания слов и подбор синонимов;
- построение оглавлений и предметных указателей;
- распечатка подготовленного текста на принтере и т.п.

Также практически все текстовые процессоры обладают следующими функциями:

Поддержка различных форматов документов;
- многооконность, т.е. возможность работы с несколькими документами одновременно;
- вставка и редактирование формул;
- автоматическое сохранение редактируемого документа;
- работа с многоколоночным текстом;
- возможность работы с различными стилями форматирования;
- создание шаблонов документов;
- анализ статистической информации.

Сегодня практически все мощные текстовые редакторы входят в состав интегрированных программных пакетов, предназначенных для нужд современного офиса. Так, например, Microsoft Word входит в состав самого популярного офисного пакета Microsoft Office.

Аналогичные MS Office программы - OpenOffice.org Writer, StarOffice Writer, Corel WordPerfect, Apple Pages.

Обработка персональной информации

Российская Федерация ратифицировала Конвенцию Совета Европы «О защите физических лиц при автоматизированной обработке персональных данных». С ратификацией этого международного документа наша страна и мы, её граждане вступили в новую социально-экономическую формацию, в которой полномочия государства и права человека вторичны относительно прав «операторов». Во исполнение Конвенции в России поспешно принят ФЗ-№152 «О персональных данных» (далее ФЗ-№152), который во всех базовых положениях повторяет Конвенцию. ФЗ-№152, однако до последнего времени при походе в библиотеку или к стоматологу человеку не приходилось давать полный отчёт о своей жизни: себе, семье, работе, собственности.

Жёсткий и тотальный сбор информации обо всех сторонах жизни человека начался только в связи с принятием ФЗ-№210 «Об организации предоставления государственных и муниципальных услуг». Здесь-то и заработали заблаговременно принятые Конвенция Совета Европы «О защите физических лиц при автоматизированной обработке персональных данных» и ФЗ-№152. Именно на основании ФЗ-№152 в последнее время гражданам предлагают подписывать различные бланки «о согласии на обработку их персональных данных» по месту работы, учёбы, в детском саду, который посещает ребёнок. Собирают наши «добровольные» согласия школы, поликлиники, библиотеки, все социальные учреждения. Подсуетились и магазины, которые при предоставлении скидки раздают анкеты, где мелким шрифтом включена фраза о согласии на обработку персональных данных.

Прежде чем дать такое согласие, человеку необходимо знать, что стоит за понятиями, употребляемыми в бланках:

1. В соответствии с ФЗ-№152 персональные данные – это любая информация, относящаяся прямо или косвенно к физическому лицу.
2. Понятие «обработка персональных данных» имеет далеко не такое невинное значение как большинству из нас кажется. В соответствии с п. 3 статьи 3 ФЗ-№152, «обработка» включает в себя – любое действие (операцию) или совокупность действий (операций), совершаемых с использованием средств автоматизации или без использования таких средств с персональными данными, включая сбор, запись, систематизацию, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передачу (распространение, предоставление, доступ), обезличивание, блокирование, удаление, уничтожение персональных данных.
3. Очень важно понятие «оператор». Нужно помнить, что оператор независимо от желания человека самостоятельно решает какие персональные данные он собирает и какие действия с этими данными человека совершает. В соответствии с ФЗ-№152 оператор это – государственный орган, муниципальный орган, юридическое или физическое лицо, самостоятельно или совместно с другими лицами организующие и (или) осуществляющие обработку персональных данных, а также определяющие цели обработки персональных данных, состав персональных данных, подлежащих обработке, действия (операции), совершаемые с персональными данными.
4. Что прячется за понятием «использование персональных данных»? Поскольку операторам предоставлено право любых действий с нашими персональными данными, то и принятие юридически значимых решений охватывается этим правом. Давая согласие на обработку своих персональных данных, человек соглашается на совершение операторами любых действий и манипуляций с любой своей, в том числе и конфиденциальной информацией.
5. В соответствии с ФЗ-№152 «распространение» – это действия, направленные на раскрытие персональных данных неопределенному кругу лиц. Поскольку персональные данные – это любая информация о человеке, то распространение – это фактически не контролируемое человеком ознакомление с его самой конфиденциальной информацией любых физических и юридических лиц по усмотрению оператора. Если оператор сочтёт необходимым, то в процессе обработки-распространения может осуществляться и трансграничная передача персональных данных – передача персональных данных оператором через Государственную границу Российской Федерации органу власти иностранного государства, иностранному физическому или иностранному юридическому лицу.
6. ФЗ-№152 даёт практически безграничные возможности для любых манипуляций с нашими персональными данными любому оператору, получившему согласие человека «на обработку персональных данных». Формальная фраза бланков о праве человека отозвать согласие на обработку персональных данных ничего не решает. К моменту отзыва персональные данные человека уже разосланы в различные базы, где они остаются и используются. Кроме того, отзыв согласия чреват репрессивными мерами оператора. Некоторые операторы предупреждают о них сразу, а другие будут применять на практике без предупреждения. В статью 9 ФЗ-№152 внесены изменения, дающие оператору право продолжать обработку персональных данных и после отзыва согласия на обработку. А изменения в статье 6 этого закона допускают обработку персональных данных без согласия человека при оказании государственных и муниципальных услуг, включая регистрацию на едином портале государственных услуг. Если следовать логике этих положений, никакие электронные услуги не будут оказываться при отказе человека на обработку его персональных данных. Итак, в информационном обществе на первый план выходит новое лицо – оператор, диктующий свои условия гражданам и государству.
7. Тысячи граждан по религиозным убеждениям не могут принять автоматизированный способ учета персональных данных, который основывается на использовании личных идентификаторов (СНИЛС, ИНН и других), штрихового кодирования информации, создании баз персональных данных, доступ в которые осуществляется на основании цифровых идентификаторов личности. Использование личных цифровых идентификаторов в любых правоотношениях нарушает право действовать под своим именем, гарантированное статьей 19 Гражданского кодекса РФ. Для верующего человека замена имени цифровым идентификатором неприемлема, поскольку происходит фактическая замена имени, данного при Крещении, цифровым номером, который является пожизненным и становится обязательным условием доступа к любым правам и услугам.

Однако отказ от использования автоматизированного способа учета персональных данных не лишает граждан прав, гарантированных Конституцией РФ. Первые примеры санкций за отказ предоставить всю информацию о себе в полное распоряжение оператора уже имеются. Так называемые операторы в ответ на отказ дать согласие на обработку персональных данных прекращают гражданам выплату дотаций, не оказывают медицинскую помощь и др. Учащиеся сообщают об угрозах не допустить к экзаменам или не выдать аттестат. Это является грубейшим нарушением прав граждан.

В Конституции РФ права граждан на социальное обеспечение, медицинскую помощь, образование и другие не обусловлены обязательным согласием на обработку персональных данных. Конституция имеет прямое действие и высшую юридическую силу. Граждане имеют право требовать реализации всех своих прав и в случае отказа на обработку персональных данных.

Архиерейским Собором Русской Православной Церкви принят Документ «Позиция Церкви в связи с развитием технологий учета и обработки персональных данных». В Документе говорится, что тысячи граждан на основе своих конституционных прав и по религиозной мотивации отказываются от использования новой идентификационной системы.

Церковь считает особенно важным принцип добровольности принятия любых идентификаторов и указывает, что необходимо проявлять уважение к конституционным правам граждан и не дискриминировать тех, кто отказывается от принятия электронных средств идентификации.

Церковь считает недопустимым ограничение прав граждан в случае отказа дать согласие на обработку персональных данных.

В п. 5 говорится: «В связи с тем, что обладание персональной информацией создает возможность контроля и управления человеком через различные сферы жизни (финансы, медицинская помощь, семья, социальное обеспечение, собственность и другое), возникает реальная опасность не только вмешательства в повседневную жизнь человека, но и внесения соблазна в его душу. Церковь разделяет опасения граждан и считает недопустимым ограничение их прав в случае отказа человека дать согласие на обработку персональных данных».

Организация обработки информации

В каждом конкретном случае на возможные варианты оформления структуры ОИ оказывают влияние, не только общие, но и индивидуальные факторы, характерные для конкретного предприятия.

К индивидуальным факторам относятся:

Продолжительность использования и степень проникновения (широта/число, глубина/объем и степень интеграции приложений) ОИ на предприятии;
стиль руководства;
существующая структура организации в целом и сферы ОИ.

В зависимости от масштаба сферы обработки информации на конкретном предприятии возникают разнообразные организационные структуры в этой области. Рассмотрим примерные структурные схемы (органиграммы), которые характеризуют типовые варианты организации подразделений (или службы) ОИ различных масштабов.

Структура большого подразделения ОИ расчленена на втором уровне на отдел общей организации, отдел проектирования прикладных систем и их обслуживания, ИЦ, отдел базовых технологических средств, а также ВЦ. Как видно, руководству здесь приданы широкие штабные функции.

Обслуживание в больших предприятиях занимает от 50 до 70 % имеющихся мощностей, по-этому можно представить соответствующую автономную часть структуры. Вместе с тем против расчленения этого подразделения говорит часто то, что на практике работа по проектированию является обычно более престижной, а обслуживание и сопровождение систем их разработчиками оказывается, как правило, все-таки наиболее качественным, поэтому действительно имеет смысл обеспечивать эти функции совместно, т.е. с помощью одних и тех же людей.

В вычислительном центре может, например, отсутствовать центральное хранилище данных; на многих предприятиях приняты распределенные структуры данных.

Мероприятия по загрузке машин охватывают планирование на различную глубину и текущее управление. При организации вычислительных работ часто имеет смысл использовать их в принципе сменный характер.

Разделение задач проектирования (развития) и использования систем можно рекомендовать также для структуры среднего подразделения ОИ. Выбор и ввод в эксплуатацию (внедрение) стандартных прикладных программных средств, приобретаемых от сторонних организаций, со временем имеют для всех фирм все большее значение; обслуживание конечных пользова-телей представлено в этой же группе. Центральное хранилище данных в таких структурах будет часто отсутствовать, задачи согласования и контроля децентрализованы по производственным подразделениям.

Функции планирования и поддержки включают и организационные задачи, если последние не находятся полностью в компетенции руководства соответствующих производственных подразделений. Функции планирования и поддержки охватывают также технические и программные средства и сетевое планирование. В зависимости от тех или иных ситуаций, сложившихся с составом персонала, возможно также делегирование некоторых функций в рабочие группы второго или третьего уровня.

Ввиду небольшой численности работников малого подразделения ОИ (различные функции выполняет одно и то же лицо, задачи планирования и исполнения должны при этом осуществляться в своеобразном персональном союзе. Управление часто передается подразделению, которое побудило внедрение ОИ. Организация, хранилище данных, обработ-ка и контроль находятся в производственных подразделениях. Очень часто используется только стандартное прикладное программное обеспечение. Функции поддержки и сопровождения в таких предприятиях часто передаются на сторону, так как собственные специалисты этого профиля еще не сформировались.

Обработки экономической информации

1. Табличное отражение экономической информации.

Таблицы - компактное концентрированное отражение деятельности предприятия в цифровом выражении. Роль таблиц высока из-за возможности без текстового анализа. Является самой удобной и рациональной формой для восприятия информации. Существуют 3 вида таблиц: простые, групповые, комбинированные.

По аналитическому содержанию различают таблицы, отражающие характеристику изучаемого объекта по тем или другим признакам, порядок расчета показателей, динамику изучаемых показателей, структурные изменения в составе показателей, взаимосвязь показателей по различным признакам, результаты расчета влияния факторов на уровень исследуемого показателя.

2. Графический способ отражения информации.

Графики являются масштабным изображением показателей и их зависимости с помощью геометрических фигур.

Основные формы графиков – диаграммы, которые по своей форме бывают столбиковые, полосовые, круговые, квадратные, линейные, фигурные. По содержанию – диаграммы сравнения (самый простой график сравнения величин показателей – столбиковые, полосовые диаграммы. Для их составления используют прямоугольную систему координат.), структурные (секторные), динамические, графики связи (На оси абсцисс откладываются значения факторного показателя, а на оси ординат – значения результативного показателя в соответствующем масштабе.), графики контроля (на графике будут две линии: плановый и фактический уровень показателей за промежуток времени.) и т.д.

3. Способ сравнения.

Сравнение – научный метод познания, в процессе которого неизвестное явление, предметы сопоставляются с уже известными, изучаемыми ранее, с целью определения общих черт либо различий между ними.

Используются при:

Сравнение фактических отчетных данных с плановыми;
- сравнение показателей в динамике;
- сравнение показателей анализируемого ПП со средними показателями по отрасли;
- сравнение результатов деятельности до и после принятия управленческого решения.

4. Использование относительных и средних величин.

Абсолютные показатели показывают количественные размеры явления безотносительно к размеру других явлений в единицах меры, веса, объема, продолжительности, площади, стоимости и т.д.

Относительные показатели отражают соотношение величины изучаемого явления с величиной какого-либо другого явления или с величиной этого явления, но взятой задругой период или по другому объекту. Относительные показатели получают в результате деления одной величины на другую, которая принимается за базу сравнения.

Для характеристики изменения показателей за какой-либо промежуток времени используют относительные величины динамики. Их определяют путем деления величины показателя текущего периода на его уровень в предыдущем периоде (месяце, квартале, году). Называются они темпами роста (прироста) и выражаются обычно в процентах или коэффициентах. Относительные величины динамики могут быть базисными и цепными. Показатель структуры - это относительная доля (удельный вес) части в общем, выраженная в процентах или коэффициентах.

5.Группировка информации.

Широкое применение в АХД находит группировка информации - деление массы изучаемой совокупности объектов на количественно однородные группы по соответствующим признакам. В зависимости от цели анализа используются типологические, структурные и аналитические группировки.

Примером типологических группировок могут быть группы населения по роду деятельности, группы предприятий по формам собственности и т.д.

Структурные группировки позволяют изучать внутреннее строение показателей, соотношения в нем отдельных частей. С их помощью изучают состав рабочих по профессиям, стажу работы, возрасту, выполнению норм выработки.

Аналитические (причинно-следственные) группировки используются для определения наличия, направления и формы связи между изучаемыми показателями.

6. Балансовый способ.

Балансовый метод служит главным образом для отражения соотношений, пропорций двух групп взаимосвязанных экономических показателей, итоги которых должны быть тождественными. Широко используется при анализе обеспеченности предприятия трудовыми, финансовыми ресурсами, сырьем, топливом, материалами, основными средствами производства и т.д., а также при анализе полноты их использования.

Балансовый способ может быть использован при построении детерминированных аддитивных факторных моделей. В анализе можно встретить модели, построенные на основе товарного баланса. Например,

Остатки на н.г.+ Производство + Ввоз= Реализов. Продукция + вывоз + Остатки на к.г.

7. Многомерные сравнения.

При необходимости дать оценку деятельности нескольких предприятий одной отрасли, страны, субъекта. По уровню этих показателей проводят ранжирование деятельности предприятия. По разным показателям одно предприятие может занимать разные места, поэтому используются различные методы. Многомерный сравнительный анализ, основанный на методе Эвклидовых расстояний, позволяет учитывать не только абсолютную величину, но и близость/дальность данного показателя до показателей предприятия-эталона. В связи с этим координаты сравниваемых предприятий выражаются в долях, соответствующих координат предприятия-эталона (его координаты = 1).

Этапы проведения многомерного сравнительного анализа, основанного на методе Эвклидовых расстояний:

1. Обоснование системы показателей, по которым оценивается результаты деятельности предприятий, сбор информации и составление матрицы исходных данных.
2. В каждой графе в матрице определяется максимальное значение, которое приравниваете к 1. Затем все элементы графы делятся на максимальное значение.
3. Полученные коэффициенты возводят в квадрат и умножают на величину соответствующих коэффициентов значимости, после чего суммируют в отдельную графу рейтинговой оценки.
4 Полученные рейтинговые оценки ранжируют и определяют мест каждого предприятия по сумме. 1 место у предприятия с максимальной рейтинговой оценкой.

При методе суммы мест в каждой графе проставляются места предприятия по данному коэффициенту, в последнем столбце места суммируются. У кого меньше сумма – 1 место. Если одинаковые места, то смотрят на коэффициент значимости (самый значимый – коэффициент абсолютной ликвидности).

8. Способы приведения показателей в сопоставимый вид.

Важное условие, которое нужно соблюдать при анализе, - необходимость обеспечения сопоставимости показателей, поскольку сравнивать можно только качественно однородные величины.

Несопоставимость показателей может быть вызвана различными причинами: разным уровнем цен, объемов деятельности, структурными изменениями, неоднородностью качества продукции, различиями в методике расчета показателей, неодинаковыми календарными периодами и т.д. Сравнение несопоставимых показателей приводит к неправильным выводам по результатам анализа. Если несопоставимость показателей вызвана разным уровнем стоимостной оценки, то для нейтрализации данного фактора их уровень выражают в одних и тех же ценах

Способы обработки информации

В современных системах обработки информации используются цифровые технологии, исключающие бумажный носитель и осуществляющие обмен данными по сети между АРМ технологии предполагают также объединение совместных усилий группы сотрудников над решением какой-либо задачи (т.е. организацию в сети рабочей группы), обмен мнениями в ходе обсуждения в сети какого-либо вопроса в режиме реального времени (телеконференция), оперативный обмен материалами через электронную почту, электронные доски объявлений и т.п. Для подобных систем, охватывающих работу предприятия в целом, получил распространение термин «корпоративные системы управления бизнес- процессами». Для подобных систем характерно использование технологии.

«клиент-сервер», в том числе и подключение удаленных пользователей через глобальную сеть Internet. Не редкость, когда система объединяет в общее информационное пространство более чем 40 тысяч пользователей, размещающихся по разным странам и континентам. Одним из таких примеров может служить компания McDonalds, имеющая свои подразделения по всему миру, в том числе и в России.

Просто расстановка на рабочих местах сотрудников персональных компьютеров и соединение их в локальную сеть вряд ли даст положительный эффект в управлении предприятием, если коренным образом не пересмотреть существующую информационную структуру. Нельзя автоматизировать устаревшие способы работы, персональный компьютер может превратиться в средство для высокоскоростного производства новых бумаг. Так, по результатам анализа работы предприятий в США описан случай, когда для включения временного служащего в списочный состав предприятия было оформлено 43 различных документа, всего 113 страниц, включая требуемые копии. Это происходит потому, что в информационной системе существуют лишние связи (коммуникации) между подразделениями и отдельными служащими. При этом для нормального функционирования предприятия требуется не более 20-30 внутренних коммуникаций, на самом же деле их в 3-4 раза больше. Причем практика автоматизации управления предприятием показывает, что установка производительного компьютерного оборудования может привести к увеличению количества коммуникаций за счет печатания «на всякий случай» лишних копий, и их рассылки. Поэтому этапу внедрения на предприятии компьютерной техники должно предшествовать сокращение лишних коммуникаций (сотрудников) до оптимального уровня.

Одна из распространённых опасностей: приписывание мнимого могущества компьютеру. Персональный компьютер, каким бы дорогим и производительным он не был, это всего лишь счетная машина, которая не в состоянии решить наши сложные экономические проблемы, если мы сами не в состоянии правильно сформулировать задачу.

Большое значение имеют также социально-психологические проблемы, возникающие в коллективе при внедрении компьютерной техники, что вызывает, как правило, сокращение числа сотрудников, улучшение (а значит, и усиление) контроля за деятельностью остальных сотрудников и т.п.

Компьютеризация существенно изменяет технологию бухгалтерского учета и анализа хозяйственной деятельности. В неавтоматизированной системе ведения бухгалтерского учета обработка данных о хозяйственных операциях легко прослеживается и обычно сопровождается документами на бумажном носителе информации - распоряжениями, поручениями, счетами и учетными регистрами, например журналами учета. Аналогичные документы часто используются и в компьютерной системе, но во многих случаях они существуют только в электронной форме. Более того, основные учетные документы (бухгалтерские книги и журналы) в компьютерной системе бухгалтерского учета представляют собой файлы данных, прочитать или изменить которые без компьютера невозможно.

Компьютерная технология характеризуется рядом особенностей, которые следует учитывать при оценке условий и процедур контроля.

Единообразное выполнение операций. Компьютерная обработка предполагает использование одних и тех же команд при выполнении идентичных операций бухгалтерского учета, что практически исключает появление случайных ошибок, обыкновенно присущих ручной обработке. Напротив, программные ошибки (или другие систематические ошибки в аппаратных либо программных средствах) приводят к неправильной обработке всех идентичных операций при одинаковых условиях.

Разделение функций. Компьютерная система может осуществить множество процедур внутреннего контроля, которые в неавтоматизированных системах выполняют разные специалисты. Такая ситуация оставляет специалистам, имеющим доступ к компьютеру, возможность вмешательства в другие функции. В итоге компьютерные системы могут потребовать введения дополнительных мер для поддержания контроля на необходимом уровне, который в неавтоматизированных системах достигается простым разделением функций. К подобным мерам может относиться система паролей, которая предотвращает действия, недопустимые со стороны специалистов, имеющих доступ к информации об активах и учетных документах через терминал в диалоговом режиме.

Потенциальные возможности появления ошибок и неточностей. По сравнению с неавтоматизированными системами бухгалтерского учета компьютерные системы более открыты для несанкционированного доступа, включая лиц, осуществляющих контроль. Они также открыты для скрытого изменения данных и прямого или косвенного получения информации об активах. Чем меньше человек вмешивается в машинную обработку операций учета, тем ниже возможность выявления ошибок и неточностей. Ошибки, допущенные при разработке или корректировке прикладных программ, могут оставаться незамеченными на протяжении длительного периода. Потенциальные возможности усиления контроля со стороны администрации.

Компьютерные системы дают в руки администрации широкий набор аналитических средств, позволяющих оценивать и контролировать деятельность фирмы. Наличие дополнительного инструментария обеспечивает укрепление системы внутреннего контроля в целом и, таким образом, снижение риска его неэффективности. Так, результаты обычного сопоставления фактических значений коэффициента издержек с плановыми, а также сверки счетов поступают к администрации более регулярно при компьютерной обработке информации. Кроме того, некоторые прикладные программы накапливают статистическую информацию о работе компьютера, которую можно использовать в целях контроля фактического хода обработки операций бухгалтерского учета.

Инициирование выполнения операций в компьютере. Компьютерная система может выполнять некоторые операции автоматически, причем их санкционирование не обязательно документируется, как это делается в неавтоматизированных системах бухгалтерского учета, поскольку сам факт принятия такой системы в эксплуатацию администрацией предполагает в неявном виде наличие соответствующих санкций.

Таким образом, способ обработки хозяйственных операций при ведении бухгалтерского учета оказывает существенное влияние на организационную структуру фирмы, а также на процедуры и методы внутреннего контроля.

Качественно изменяется труд бухгалтера и его взаимодействие с администрацией. Однако автоматизации труда бухгалтера мешают специфические условия работы в российских условиях, например большое количество документов, противоречащих друг другу. Дополнительные трудности ожидаются в ближайшие 3 года в связи с переходом России на международные стандарты учета.

Виды обработки информации

Обработка информации состоит в получении одних «информационных объектов» из других «информационных объектов» путем выполнения некоторых алгоритмов и является одной из основных операций, осуществляемых над информацией, и главным средством увеличения ее объема и разнообразия.

На самом верхнем уровне можно выделить числовую и нечисловую обработку. В указанные виды обработки вкладывается различная трактовка содержания понятия «данные». При числовой обработке используются такие объекты, как переменные, векторы, матрицы, многомерные массивы, константы и т.д. При нечисловой обработке объектами могут быть файлы, записи, поля, иерархии, сети, отношения и т.д. Другое отличие заключается в том, что при числовой обработке содержание данных не имеет большого значения, в то время как при нечисловой обработке нас интересуют непосредственные сведения об объектах, а не их совокупность в целом.

С точки зрения реализации на основе современных достижений вычислительной техники выделяют следующие виды обработки информации:

Последовательная обработка, применяемая в традиционной фоннеймановской архитектуре ЭВМ, располагающей одним процессором;
параллельная обработка, применяемая при наличии нескольких процессоров в ЭВМ;
конвейерная обработка, связанная с использованием в архитектуре ЭВМ одних и тех же ресурсов для решения разных задач, причем если эти задачи тождественны, то это последовательный конвейер, если задачи одинаковые – векторный конвейер.

Принято относить существующие архитектуры ЭВМ с точки зрения обработки информации к одному из следующих классов.

Архитектуры с одиночным потоком команд и данных (SISD). К этому классу относятся традиционные однопроцессорные системы, где имеется центральный процессор, работающий с парами «атрибут – значение».

Архитектуры с одиночными потоками команд и данных (SIMD). Особенностью данного класса является наличие одного (центрального) контроллера, управляющего рядом одинаковых процессоров.

В зависимости от возможностей контроллера и процессорных элементов, числа процессоров, организации режима поиска и характеристик маршрутных и выравнивающих сетей выделяют:

Матричные процессоры, используемые для решения векторных и матричных задач;
ассоциативные процессоры, применяемые для решения нечисловых задач и использующие память, в которой можно обращаться непосредственно к информации, хранящейся в ней;
процессорные ансамбли, применяемые для числовой и нечисловой обработки;
конвейерные и векторные процессоры.

Архитектуры с множественным потоком команд и одиночным потоком данных (MISD). К этому классу могут быть отнесены конвейерные процессоры.

Архитектуры с множественным потоком команд и множественным потоком данных (MIMD). К этому классу могут быть отнесены следующие конфигурации: мультипроцессорные системы, системы с мультобработкой, вычислительные системы из многих машин, вычислительные сети.

Создание данных, как операция обработки, предусматривает их образование в результате выполнения некоторого алгоритма и дальнейшее использование для преобразований на более высоком уровне.

Модификация данных связана с отображением изменений в реальной предметной области, осуществляемых путем включения новых данных и удаления ненужных.

Обеспечение безопасности и целостности данных направлено на адекватное отображение реального состояния предметной области в информационной модели и обеспечивает защиту информации от несанкционированного доступа (безопасность) и от сбоев и повреждений технических и программных средств.

Поиск информации, хранимой в памяти компьютера, осуществляется как самостоятельное действие при выполнении ответов на различные запросы и как вспомогательная операция при обработке информации.

Поддержка принятия решений является наиболее важным действием, выполняемым при обработке информации. Широкая альтернатива принимаемых решений приводит к необходимости использования разнообразных математических моделей.

В зависимости от степени информированности о состоянии управляемого объекта, полноты и точности моделей объекта и системы управления, взаимодействия с внешней средой, процесс принятия решений протекает в различных условиях:

1) принятие решений в условиях определенности. В этой задаче модели объекта и системы управления считаются заданными, а влияние внешней среды – несущественным. Поэтому между выбранной стратегией использования ресурсов и конечным результатом существует однозначная связь, откуда следует, что в условиях определенности достаточно использовать решающее правило для оценки полезности вариантов решений, принимая в качестве оптимального то, которое приводит к наибольшему эффекту. Если таких стратегий несколько, то все они считаются эквивалентными. Для поиска решений в условиях определенности используют методы математического программирования;
2) принятие решений в условиях риска. В отличие от предыдущего случая для принятия решений в условиях риска необходимо учитывать влияние внешней среды, которое не поддается точному прогнозу, а известно только вероятностное распределение ее состояний. В этих условиях использование одной и той же стратегии может привести к различным исходам, вероятности появления которых считаются заданными или могут быть определены. Оценку и выбор стратегий проводят с помощью решающего правила, учитывающего вероятность достижения конечного результата;
3) принятие решений в условиях неопределенности. Как и в предыдущей задаче между выбором стратегии и конечным результатом отсутствует однозначная связь. Кроме того, неизвестны также значения вероятностей появления конечных результатов, которые либо не могут быть определены, либо не имеют в контексте содержательного смысла. Каждой паре «стратегия – конечный результат» соответствует некоторая внешняя оценка в виде выигрыша. Наиболее распространенным является использование критерия получения максимального гарантированного выигрыша;
4) принятие решений в условиях многокритериальности. В любой из перечисленных выше задач многокритериальность возникает в случае наличия нескольких самостоятельных, не сводимых одна к другой целей. Наличие большого числа решений усложняет оценку и выбор оптимальной стратегии. Одним из возможных путей решения является использование методов моделирования.

Создание документов, сводок, отчетов заключается в преобразовании информации в формы, пригодные для чтения как человеком, так и компьютером. С этим действием связаны и такие операции, как обработка, считывание, сканирование и сортировка документов.

При обработке информации осуществляется ее перевод из одной формы представления или существования в другую, что определяется потребностями, возникающими в процессе реализации информационных технологий.

Реализация всех действий, выполняемых в процессе обработки информации, осуществляется с помощью разнообразных программных средств.

Основные характеристики модулей ПК

Персональные компьютеры обычно состоят из следующих основных модулей:

  1. системный блок
    1. Блок питания
    2. Материнская плата
    3. Процессор
    4. Память
  2. устройства вывода информации (монитор)
  3. устройства ввода информации (клавиатура, мышка)
  4. средства хранения информации

Рассмотрим эти модули более подробно

Системный блок (корпус).

Корпус ПК защищает внутренние элементы ПК от внешнего воздействия.

Корпус включает в себя: Блок питания, кабели для подключения материнской платы, дополнительные вентиляторы.

Число отсеков имеет значение для расширяемости системы.

Типы корпусов.

Название Габариты, высота / ширина / длинна (см) Мощность б.п., Вт Количество отсеков Дополнительные характеристики
5,25 3,5
Slimline 7*35*45 1-2 1-2 Ограничены возможности расширения и модернизации
Desktop 20*45*45 200-250 2-3 1-2 Занимает много места
Mini Tower 45*20*45 200-250
Midi Tower 50*20*45 200-250 Наиболее распространен
Big Tower 63*20*45 250-350
File Server 73*35*55 350-400 Самый дорогой

Блок питания.

Блок питания вырабатывает различные напряжения для внутренних устройств и материнской платы. Срок работы блока питания составляет 4-7 лет, а продлить его можно более редким включением и выключением ПК.

Существует три форм-фактора (типа) блоков питания и соответственно материнских плат.

  • AT – подключается в два разъема на материнской плате. Использовались в ПК старых типов. Включение и выключение питания в них производиться обычным сетевым выключателем, находящимся под напряжением сети.
  • ATX – 1 разъем. Включаются по команде с мат. платы. БП АТХ работают по следующей схеме: при t 0 до 35 0 С вентилятор вращается с минимальной скоростью и его практически не слышно. Когда t 0 достигает 50 0 С, обороты вентилятора увеличиваются до максимальной величины и не снижаются до уменьшения температуры.

Материнские платы стандарта ATX, как правило, не совместимы с блоками питания стандарта AT.необходимо чтобы корпус и м. плата были одного типа.

  • BTX – имеет 2 обязательных компонента:
    • Модуль теплового баланса, направляющий свежий воздух непосредственно на процессорный радиатор.
    • Поддерживающий модуль, на который устанавливается материнская плата. Поддерживающий модуль создан для компенсации ударов и толчков системы, уменьшения перегибов материнской платы. Благодаря ему удалось повысить максимально-допустимую массу процессорного радиатора с 450 до 900 граммов. К тому же существенно изменена конфигурация материнской платы и системного блока. Теперь самые горячие компоненты ПК располагаются на пути следования потоков воздуха, повышая КПД корпусных кулеров.

«-» несовместимость с ATX, несмотря на механическую и электрическую совместимость блоков питания (400 Вт, 120 мм вентилятор).

Чем грозит ПК недостаточная мощность БП.

В случае чрезмерной перегрузки БП сработает схема защиты, и БП просто не запуститься. В худшем случае, последствия могут быть самыми разными, например, весьма печальными для жестких дисков. Понижение напряжения питания HDD расценивается как сигнал к отключению и HDD начинает парковать считывающие головки. Когда уровень напряжения восстанавливается, диск снова включается и начинает раскручиваться.

Также могут происходить малопонятные сбои в работе программ. Некачественный БП при аварийной ситуации может вывести из строя мат. плату и видеокарту.

Материнская плата

@ Материнская (системная) плата является центральной частью любого компьютера, на которой размещаются в общем случае центральный процессор , сопроцессор , контроллеры , обеспечивающие связь центрального процессора с периферийными устройствами, оперативная память , кэш-память , элемент BIOS (базовой системы ввода/вывода), аккумуляторная батарея , кварцевый генератор тактовой частоты и слоты (разъемы) для подключения других устройств . Все эти модули соединены воедино с помощью системной шины, которая, как мы уже выяснили находится на материнской плате.

Общая производительность материнской платы определяется не только тактовой частотой , но и количеством (разрядностью) данных, обрабатываемых в единицу времени центральным процессором , а также разрядностью шины обмена данных между различными устройствами материнской платы.

Архитектура материнских плат постоянно совершенствуется: увеличивается их функциональная насыщенность, повышается производительность. Стало стандартом наличие на материнской плате таких встроенных устройств, как двухканальный E-IDE-контроллер HDD (жёстких дисков), контроллер FDD (гибких (floppy) дисков), усовершенствованного параллельного (LPT) и последовательного (COM) портов, а также последовательного инфракрасного порта.

@ Порт – многоразрядный вход или выход в устройстве.

COM1, COM2 -последовательные порты, которые передают электрические импульсы (информацию) последовательно один за другим (сканер, мышка). Аппаратно реализу­ются с помощью 25-контактного и 9-контактного разъемов, которые выведены на заднюю панель системного блока.

LPT - параллельный порт имеет более высокую скорость, так как передает одновременно 8 электрических импульсов (подключают принтер). Аппаратно реализуется в виде 25-контактного разъема на задней панели системного блока.

USB – (универсальная последовательная шина) обеспечивает высокоскоростное подключение к ПК сразу нескольких периферийных устройств (подключают флешки, веб-камеры, внешние модемы, HDD и др.). Данный порт является универсальным и способен заменить все остальные порты.

^ PS/2 – специальный порт для клавиатуры и мыши.

AGP – ускоренный графический порт для подключения монитора.

Быстродействие различных компонентов компьютера (процессора, оперативной памяти и контроллеров периферийных устройств) может существенно различаться.

^ Для согласования быстродействия на материнской плате устанавливаются специальные микросхемы (чипсеты), включающие в себя контроллер оперативной памяти (так называемый северный мост ) и контроллер периферийных устройств (южный мост ).

Северный мост обеспечивает обмен информацией между процессором и оперативной памятью по системной магистрали.

В процессоре используется внутреннее умножение частоты, поэтому частота процессора в несколько раз больше, чем частота системной шины. В современных компьютерах частота процессора может превышать частоту системной шины в 10 раз (например, частота процессора 1 ГГц, а частота шины - 100 МГц).

Логическая схема материнской платы

К северному мосту подключается шина PCI (Peripherial Component Interconnect bus - шина взаимодействия периферийных устройств), которая обеспечивает обмен информацией с контроллерами периферийных устройств. (Частота контроллеров меньше частоты системной шины, например, если частота системной шины составляет 100 МГц, то частота шины PCI обычно в три раза меньше - 33 МГц.) Контроллеры Периферийных устройств (звуковая плата, сетевая плата, SCSI-контроллер, внутренний модем) устанавливаются в слоты расширения системной карты.

Для подключения видеоплаты используется специальная шина AGP (Accelerated Graphic Port - ускоренный графический порт), соединенная с северным мостом и имеющая частоту, в несколько раз большую, чем шина PCI.

Процессор

В общем случае@ подпроцессоромпонимают устройство производящее набор операций над данными, представленными в цифровой форме (двоичным кодом).

Применительно к вычислительной технике@ под процессором понимают центральное процессорное устройство (CPU), обладающее способностью выбирать, декодировать и выполнять команды, а также передавать и принимать информацию от других устройств.

Количество фирм, разрабатывающих и производящих процессоры для ПК, невелико. В настоящее время известны: Intel , Cyrix , AMD , NexGen , Texas Instrument .

Структура и функции процессора:

Структуру процессора можно представить следующей схемой:

1 ) УУ – управляет всем ходом вычислительного и логического процесса в компьютере. Это «мозг» компьютера, который контролирует все его действия. Функции УУ заключаются в том, чтобы прочитать очередную команду, распознать ее и далее подключить необходимые электронные цепи и устройства для ее выполнения.

2) АЛУ – производит непосредственную обработку данных в двоичном коде. АЛУ умеет выполнять только определенный набор простейших операций:

  • Арифметические операции (+, -, *, /);
  • Логические операции (сравнение, проверка условия);
  • Операции пересылки (из одной области оперативной памяти в другую).

3) Тактовый генератор – задает ритм всем операциям в процессоре посылая один импульс через равные промежутки времени (такт). Он синхронизирует работу устройств ПК.

@Такт – это промежуток времени между началами подачи двух последовательных импульсов генератора тактовой частоты. ГТЧ синхронизирует работу узлов ПК.

^ 4) Сопроцессор – позволяет значительно ускорить работу компьютера с числами с плавающей точкой (речь идет о вещественных числах, например, 1,233*10 -5). При работе с текстами сопроцессор не используется.

5) Современный процессор имеет такое высокое быстродействие, что информация из ОЗУ не успевает своевременно доходить до него и процессор простаивает. Чтобы этого не происходило, в процессор встраивается специальная микросхема кэш памяти .

@ КЭШ-память – сверхбыстрая память предназначенная для хранения промежуточных результатов вычислений. Имеет объем 128-1024 Кб.

Кроме указанной элементной базы в процессоре содержатся специальные регистры, которые непосредственным образом принимают участие в обработке команд.

6) Регистры – процессорная память, или ряд специальных запоминающих ячеек.

Регистры выполняют две функции:

  • кратковременное хранение числа или команды;
  • выполнение над ними некоторых операций.

Важнейшими регистрами процессора являются:

  1. счетчик команд - служит для автоматической выборки команд программы из последовательных ячеек памяти, в нем хранится адрес выполняемой команды;
  2. регистр команд и состояний - служит для хранения кода команды.

Выполнение команды процессором разбивается на следующие этапы:

  1. из ячейки памяти, адрес которой хранится в счетчике команд, в оперативную память выбирается команда, (при этом содержимое счётчика команд увеличивается);
  2. из ОП команда передаётся в устройство управления (в регистр команд);
  3. устройство управления расшифровывает адресное поле команды;
  4. по сигналам устройства управления операнды выбираются из памяти в АЛУ (в регистры операндов);
  5. УУ расшифровывает код операции и выдаёт сигнал АЛУ выполнить операцию, которая выполняется в сумматоре;
  6. результат операции остаётся в процессоре, либо возвращается в ОЗУ.

Память

^ Классификация элементов памяти.

Файловая система

Порядок хранения файлов на диске определяется используемой файловой системой, под которой непосредственным образом подразумевается таблица размещения файлов, которая в 2-х экзэмплярах хранится в системной области диска.

На уровне физического диска под файлом подразумевается некоторая последовательность байт. Однако, поскольку минимальной единицей на диске является сектор то можно было бы под файлом понимать некую последовательность секторов. Но на самом деле файл это связанная последовательность кластеров.

@ Кластер – это совокупность нескольких смежных секторов диска (от 1 до нескольких десятков).

Традиционно принято считать, что кластер и сектор – это одно и тоже, но это разные вещи. Размер кластера может варьироваться в зависимости от емкости диска. Чем больше емкость диска, тем больше размер кластера. Размер кластера может варьироваться от 512 байт до 64 Кб.

^ Кластеры нужны для уменьшения объема таблицы размещения файлов.

Если каким либо образом разрушить таблицу размещения файлов, то, несмотря на то, что данные находятся на диске, они будут недоступны. В связи с этим на диске хранятся 2 такие таблицы.

Кластеры уменьшают размер таблицы. Но здесь появляется другая проблема. ^ Потерянное дисковое пространство.

При записи файла на диск будет занято всегда целое количество кластеров.

Например файл имеет размер 1792 байта, а размер кластера составляет 512 байт. Для того чтобы сохранить файл нам потребуется 2 полных сектора + 256 байт из третьего сектора. Таким образом в третьем секторе свободными останутся 256 байт. (1792 = 3 * 512 +256);(512*4 = 2048)

^ Оставшиеся байты в четвертом кластере не могут быть использованы . Считается что в среднем на каждый файл приходиться 0,5 кластера потерянного пространства, что приводит к потере до 15 % места на диске . То есть из 2 Гб занятого места – 300 Мб потеряно. По мере удаления файлов оно возвращается в строй.

Таблица размещения файлов впервые была использована в операционной системе MS-DOS и называлась она таблицей FAT (File Allocation Table – Таблица размещения файлов).

^ Различают несколько типов таблиц размещения файлов (FAT).

Общая структура FAT

К

В начальном 34-м кластере хранится адрес 35-го кластера, в 35-м адрес 36-го, в 36-м адрес 53-го и т.д. В 55-м кластере хранится знак конца файла.

Файловая система NTFS.

За основу файловой системы NTFS была взята файловая система семейства операционных систем UNIX.

Здесь элемент файла состоит из двух частей: имя файла и индексный дескриптор.

Файл записывается на диске следующим образом:

Имеется 13 блоков, в которые могут быть записаны адреса блоков данных расположенных на диске, из них:

11 –указывает на блок косвенной адресации из 256 блоков данных. Используется в тех случаях, если для записи адресов блоков данных не хватило первых 10-ти блоков, т.е. файл имеет большой размер.

12 – указывает не блок двойной косвенной адресации (256*256), используется тогда, когда для записи адресов блоков данных не хватило предоставленного места.

13 – адрес блока тройной адресации (256*256*256).

Таким образом, максимальный размер файла может быть до 16 Гб .

Такой механизм дает колоссальную защищенность данных. Если в FAT можно просто испортить таблицы, то в NTFS придется долго блуждать между блоками.

NTFS может сместить, даже фрагментировать по диску, все свои служебные области, обойдя любые неисправности поверхности - кроме первых 16 элементов MFT. Вторая копия первых трех записей храниться точно по середине диска.

NTFS - отказоустойчивая система, которая вполне может привести себя в корректное состояние при практически любых реальных сбоях. Любая современная файловая система основана на таком понятии, как транзакция - действие, совершаемое целиком и корректно или не совершаемое вообще .

Пример 1: осуществляется запись данных на диск. Вдруг выясняется, что в то место, куда мы только что решили записать очередную порцию данных, писать не удалось - физическое повреждение поверхности. Поведение NTFS в этом случае довольно логично: транзакция записи откатывается целиком - система осознает, что запись не произведена. Место помечается как сбойное, а данные записываются в другое место - начинается новая транзакция.

Пример 2: более сложный случай - идет запись данных на диск. Вдруг отключается питание и система перезагружается. На какой фазе остановилась запись, где есть данные? На помощь приходит другой механизм системы - журнал транзакций, в котором помечается начало и окончание любой транзакции. Дело в том, что система, осознав свое желание писать на диск, пометила в метафайле это свое состояние. При перезагрузке это файл изучается на предмет наличия незавершенных транзакций, которые были прерваны аварией и результат которых непредсказуем - все эти транзакции отменяются: место, в которое осуществлялась запись, помечается снова как свободное, индексы и элементы MFT приводятся в с состояние, в котором они были до сбоя, и система в целом остается стабильна.

^ Важно понимать, однако, что система восстановления NTFS гарантирует корректность файловой системы ,а не ваших данных.

В NTFS каждый диск разбит на тома. В каждом томе содержится своя MFT (таблица файлов), которая может быть расположена в любой части диска в пределах тома.

Содержимое HDD

1. Магнитный диск представляет собой круглую пластину из алюминия (в редких случаях из специального стекла), поверхность которой обработана по высочайшему классу точности. Таких магнитных дисков может быть несколько от 1 до 4. Чтобы придать пластинам магнитные свойства, их поверхность покрывают сплавом на основе хрома, кобальта или ферромагнетика. Такое покрытие имеет высокую твердость . Каждая сторона диска имеет свой номер.

^ 2. Для вращения дисков применяется специальный электродвигатель , в конструкцию которого входят специальные подшипники, которые могут быть как обычными шариковыми, так и жидкостными (вместо шариков в них используется специальное масло, поглощающее ударные нагрузки, что увеличивает долговечность двигателя). Жидкостные подшипники имеют более низкий уровень шума и почти не выделяют тепло во время работы.

Кроме того, некоторые современные винчестеры имеют двигатель, целиком погруженный в герметичный сосуд с маслом, что способствует эффективному отводу тепла от обмоток.

3. Каждому диску соответствует пара головок записи/чтения. Зазор между головками и поверхностью дисков составляет 0,1 мкм, что в 500 раз меньше толщины человеческого волоса. Магнитная головка представляет собой сложную конструкцию, состоящую из десятков деталей. (Эти детали настолько малы, что изготавливаются методом фотолитографии так же, как и современные микросхемы, т.е. выжигают лазером с высокой точностью) Рабочая поверхность керамического корпуса головки отполирована с такой же высокой точностью, как и диск.

4. Привод головок представляет собой плоскую катушку-соленоид из медной проволоки, помещенную между полюсами постоянного магнита и закрепленную на конце рычага, вращающегося на подшипнике. На другом его конце находится легкая стрелка с магнитными головками.

Катушка способна перемещаться в магнитном поле под действием проходящего через нее тока, перемещая одновременно все головки в радиальном направлении. Чтобы катушка с головками не болталась из стороны в сторону в нерабочем состоянии, имеется магнитный фиксатор, удерживающий головки выключенного винчестера на месте. В нерабочем состоянии накопителя головки находятся вблизи центра дисков, в "зоне парковки" и прижаты к сторонам пластин легкими пружинами. Это единственный момент, когда головки касаются поверхности диска. Но стоит дискам начать вращение - и поток воздуха приподнимает головки над их поверхностью, преодолевая усилие пружин. Головки "всплывают" и с этого момента находятся над диском, совершенно не касаясь его. Так как механический контакт головки с диском отсутствует, износа дисков и головок не происходит.

5. Также внутри гермоблока находится усилитель сигнала , помещенный поближе к головкам, чтобы уменьшить наводки от внешних помех. Он соединен с головками гибким ленточным кабелем. Таким же кабелем подводиться питание к подвижной катушке привода головок, а иногда и к двигателю. Через небольшой разъем все эти компоненты соединены с платой контроллера.

В процессе форматирования дисков может выясниться, что на поверхности пластин имеется один или несколько маленьких участков, чтение или запись в которые сопровождается ошибками (так называемые сбойные секторы, или бэд-блоки).

Сектора, чтение или запись в которые сопровождается ошибками называются@ сбойными секторами .

Однако из-за этого диск не выбрасывают и не считают его испорченным, а всего лишь помечают эти секторы особым образом, и они в дальнейшем игнорируются . Чтобы пользователь не видел этого безобразия, винчестер содержит некоторое количество запасных дорожек, которыми электроника накопителя "на лету" подменяет дефектные участки поверхности , делая их абсолютно прозрачными для операционной системы.

Кроме того, не вся область диска отведена для записи данных. Часть информационной поверхности используется накопителем для собственных нужд. Это область служебной, как ее еще иногда называют, инженерной информации.

Структура оптического диска

В соответствии с принятыми стандартами поверхность диска разделена на три области:

1. Входная директория - область в форме кольца, ближайшего к центу диска (ширина 4 мм). Считывание информации с диска начинается именно с входной директории, где содержится оглавление, адреса записей, число заголовков, объем диска, название диска;

2. Область данных ;

3. Выходная директория – имеет метку конца диска.

Типы оптических дисков:

  1. CD-ROM . На диске CD-ROM промышленным способом записывается информация, и произвести ее повторную запись невозможно. Наибольшее распространение получили 5-дюймовые диски CD-ROM емкостью 670 Мбайт. По своим характеристикам они полностью идентичны обычным музыкальным компакт-дискам. Данные на диске записываются в виде спирали.
  2. CD-R . Аббревиатурой CD-R (CD-Recordable) обозначена технология однократной оптической записи, которую можно использовать для архивирования данных, создания прототипов дисков для серийного производства и для мелкосерийного выпуска изданий на компакт-дисках, записи аудио и видео. Назначение устройства CD-R - запись данных на компакт-диски CD-R, которые потом можно читать на накопителях CD-ROM и CD-RW.
  3. CD-RW . Старые данные могут быть стерты и вместо них могут быть записаны новые. Емкость носителя CD-RW составляют 650 Мбайт и равна емкости дисков CD-ROM и CD-R.
  4. ^ DVD-ROM, DVD-R, DVD-RW . Подобны рассмотренным ранее типам оптических дисков, но имеют большую емкость.
  5. Разрабатывается HVD (Holografic Versatile Dosc) емкостью 1 Тб.

Технология DVD допускает 4 типа дисков:

  • односторонний, однослойный – 4,7 Гбайт
  • односторонний, двухслойный – 8,5 Гбайт
  • двусторонний, однослойный – 9,4 Гбайт
  • двусторонний, двухслойный – 17 Гбайт

В двухслойных дисках используется укрепляющий слой, на который стали записывать информацию. При считывании информации с первого слоя, расположенном в глубине диска, лазер проходит через прозрачную пленку второго слоя. При считывании информации со второго слоя контроллер привода подает сигнал фокусировки лазерного луча на втором слое и с него производится считывание. При всем при этом диаметр диска составляет 120 мм, а его толщина 1,2 мм.

Как уже упоминалось, например, двусторонний двухслойный диск DVD-диск может умещать до 17 Гбайт информации, это примерно 8 часов высококачественного видео, 26 часов музыки или что нагляднее всего – стопка бумаги исписанной с двух сторон высотой в 1.4 километра!

^ Форматы DVD

  1. DVD-R. могут быть только однослойными, но возможно создание двухсторонних дисков. Принцип по которому производится запись DVD-R точно такой же, как и у CD-R. Отражающий слой меняет свои характеристики, под воздействием луча лазера повышенной мощности. DVD-R не несёт в себе ничего нового, технически это тот же CD-R, только рассчитанный на более тонкие дорожки. При создании DVD-R самое пристальное внимание уделено совместимости с существующими DVD-ROM приводами. Длина записывающего лазера 635 Нм + защита записываемых дисков от копирования.
  2. DVD+R . Принципы, на которых построен DVD+R идентичны тому, что используется в DVD-R. Разница между ними в формате записи, который используется. Так, например, DVD+R диски поддерживают запись в несколько приёмов. Длина записывающего лазера 650 Нм + более высоко отражающая поверхность.

^ Существует два основных класса компакт-дисков: CD и DVD.

ZIP накопители.

Магнито-оптические диски.

Изготавливаются из алюминевого сплава и заключаются в пластиковую оболочку. Емкость 25-50 Гб.

Чтение осуществляется оптическим методом, а запись магнитными средствами, как на дискеты.

Технология записи данных следующая: лазерный луч нагревает точку на диске, а электромагнит изменяет магнитную ориентацию этой точки в зависимости от того, что необходимо записать: 0 или 1.

Считывание производится лазерным лучом меньшей мощности, который отражаясь от этой точки, меняет свою полярность.

Внешне магнитооптический носитель похож на 3,5 дискету, только чуть более толстую.

Flash-накопители

Эта технология довольно нова и поэтому к дешевым решениям не принадлежит, однако есть все предпосылки к снижению себестоимости устройств этого класса,

Основой любого флэш-накопителя является энергонезависимая память. В устройстве нет каких-либо движущихся частей, и оно не восприимчиво к вибрациям и механическим встряскам. Flash не является по сути своей магнитным носителем и на него не влияют магнитные поля. А потребление энергии происходит только во время операций запись/чтение, причем вполне достаточно питания от USB.

^ Емкость флеш-накопителей варьируется приблизительно от 256 Мб до нескольких Гб (4-5 Гб).

Кроме того, что флеш-накопитель может использоваться для записи, надежного хранения и переноса информации его можно разбивать на логические диски и устанавливать его загрузочным диском.

Достоинства

  • компактный размер;
  • отсутствие необходимости во внешнем питании;
  • вполне приемлемую скорость работы.

Технические средства обработки информации

1.3 Комплекс технических средств обработки информации

Комплекс технических средств обработки информации – это совокупность автономных устройств сбора, накопления, передачи, обработки и представления информации, а также средств оргтехники, управления, ремонтно-профилактических и других. К комплексу технических средств предъявляют ряд требований:

Обеспечение решения задач с минимальными затратами, необходимой точности и достоверности

Возможность технической совместимости устройств, их агрегативность

Обеспечение высокой надежности

Минимальные затраты на приобретения

Отечественной и зарубежной промышленностью выпускается широкая номенклатура технических средств обработки информации, различающихся элементной базой, конструктивным исполнением, использованием различных носителей информации, эксплуатационными характеристиками и др.

1.4 Классификация технических средств обработки информации

Технические средства обработки информации делятся на две большие группы. Это основные и вспомогательные средства обработки.

Вспомогательные средства – это оборудование, обеспечивающее работоспособность основных средств, а также оборудование, облегчающее и делающее управленческий труд комфортнее. К вспомогательным средствам обработки информации относятся средства оргтехники и ремонтно-профилактические средства. Оргтехника представлена весьма широкой номенклатурой средств, от канцелярских товаров, до средств доставления, размножения, хранения, поиска и уничтожения основных данных, средств административно производственной связи и так далее, что делает работу управленца удобной и комфортной.

Основные средства – это орудия труда по автоматизированной обработке информации. Известно, что для управления теми или иными процессами необходима определенная управленческая информация, характеризующая состояния и параметры технологических процессов, количественные, стоимостные и трудовые показатели производства, снабжения, сбыта, финансовой деятельности и т.п. К основным средствам технической обработки относятся: средства регистрации и сбора информации, средства приема и передачи данных, средства подготовки данных, средства ввода, средства обработки информации и средства отображения информации. Ниже, все эти средства рассмотрены подробно.

Получение первичной информации и регистрация является одним из трудоемких процессов. Поэтому широко применяются устройства для механизированного и автоматизированного измерения, сбора и регистрации данных. Номенклатура этих средств весьма обширна. К ним относят: электронные весы, разнообразные счетчики, табло, расходомеры, кассовые аппараты, машинки для счета банкнот, банкоматы и многое другое. Сюда же относят различные регистраторы производства, предназначенные для оформления и фиксации сведений о хозяйственных операциях на машинных носителях.

Средства приема и передачи информации. Под передачей информации понимается процесс пересылки данных (сообщений) от одного устройства к другому. Взаимодействующая совокупность объектов, образуемые устройства передачи и обработки данных, называется сетью. Объединяют устройства, предназначенные для передачи и приема информации. Они обеспечивают обмен информацией между местом её возникновения и местом её обработки. Структура средств и методов передачи данных определяется расположением источников информации и средств обработки данных, объемами и временем на передачу данных, типами линий связи и другими факторами. Средства передачи данных представлены абонентскими пунктами (АП), аппаратурой передачи, модемами, мультиплексорами.

Средства подготовки данных представлены устройствами подготовки информации на машинных носителях, устройства для передачи информации с документов на носители, включающие устройства ЭВМ. Эти устройства могут осуществлять сортировку и корректирование.

Средства ввода служат для восприятия данных с машинных носителей и ввода информации в компьютерные системы

Средства обработки информации играют важнейшую роль в комплексе технических средств обработки информации. К средствам обработки можно отнести компьютеры, которые в свою очередь разделим на четыре класса: микро, малые (мини); большие и суперЭВМ. Микро ЭВМ бывают двух видов: универсальные и специализированные.

И универсальные и специализированные могут быть как многопользовательскими - мощные ЭВМ, оборудованные несколькими терминалами и функционирующие в режиме разделения времени (серверы), так и однопользовательскими (рабочие станции), которые специализируются на выполнении одного вида работ.

Малые ЭВМ – работают в режиме разделения времени и в многозадачном режиме. Их положительной стороной является надежность и простота в эксплуатации.

Большие ЭВМ – (мейнфермы) характеризуются большим объемом памяти, высокой отказоустойчивостью и производительностью. Также характеризуется высокой надежностью и защитой данных; возможностью подключения большого числа пользователей.

Супер-ЭВМ – это мощные многопроцессорные ЭВМ с быстродействием 40 млрд. операций в секунду.

Сервер - компьютер, выделенный для обработки запросов от всех станций сети и представляющий этим станциям доступ к системным ресурсам и распределяющий эти ресурсы. Универсальный сервер называется - сервер-приложение. Мощные серверы можно отнести к малым и большим ЭВМ. Сейчас лидером являются серверы Маршалл, а также существуют серверы Cray (64 процессора).

Средства отображения информации используют для вывода результатов вычисления, справочных данных и программ на машинные носители, печать, экран и так далее. К устройствам вывода можно отнести мониторы, принтеры и плоттеры.

Монитор – это устройство, предназначенное для отображения информации, вводимой пользователем с клавиатуры или выводимой компьютером.

Принтер – это устройство вывода на бумажный носитель текстовой и графической информации.

Плоттер – это устройство вывода чертежей и схем больших форматов на бумагу.

Технология - это комплекс научных и инженерных знаний, реализованных в приемах труда, наборах материальных, технических, энергетических, трудовых факторов производства, способах их соединения для создания продукта или услуги, отвечающих определенным требованиям. Поэтому технология неразрывно связана с машинизацией производственного или непроизводственного, прежде всего управленческого процесса. Управленческие технологии основываются на применении компьютеров и телекоммуникационной техники.

Согласно определению, принятому ЮНЕСКО, информационная технология - это комплекс взаимосвязанных, научных, технологических и инженерных дисциплин, изучающих методы эффективной организации труда людей, занятых обработкой и хранением информации; вычислительную технику и методы организации и взаимодействия с людьми и производственным оборудованием. Их практические приложения, а также связанные со всем этим социальные, экономические и культурные проблемы. Сами информационные технологии требуют сложной подготовки, больших первоначальных затрат и наукоемкой техники. Их введение должно начинаться с создания математического обеспечения, формирования информационных потоков в системах подготовки специалистов.





Например, можно предложить классификацию, изображенную на рис. 1.13. Более определенно типы ТСО будут рассмотрены в последующих главах. Отметим лишь, что при выборе СО следует выяснять, каковы основные тактико-технические характеристики. Например, для особо важных объектов желательно, чтобы вероятность обнаружения СО была близка к 0.98; наработка на ложное срабатывание - к 2500 ч и к 3500 ...

Документа в идентичном виде - RTF предназначен для просмотра документов, их редактирования в различных версиях программных продуктов. 2. Современные технические средства используемые для создания и обработки документов Средства, используемые для создания и обработки документов являются в свою очередь средствами обработки информации, их можно разделить на две большие группы. Это основные...

Определение, создание и удаление таблиц, модификация определений (структур, схем) существующих таблиц, поиск данных в таблицах по определенным критериям (выполнение запросов), создание отчетов о содержимом базы данных. Для работы с СУБД Access 2.0 требуются: IBM PC или совместимый компьютер с процессором 386 или выше DOS 3.3 или выше Microsoft Windows 3.1 или выше Не менее 6 МВ оперативной...

С помощью которых каждый, освоивший данный язык, может сам создавать такие структуры, какие ему удобны, и вводить в них необходимые элементы управления. Необходимость программирования всегда сдерживала широкое внедрение баз данных в управление и производство в малом бизнесе. Крупные предприятия могли позволить себе сделать заказы на программирование специализированной системы «под себя». Малым...

Понравилось? Лайкни нас на Facebook